URGWOM

Development of Physically Based Model for the Middle Rio Grande Valley

Michael Roark, USGS Nabil Shafike, ISC Technical Review - October 14, 2010

Area of Significant GW/SW Interaction

EXPLANATION

RESERVOIRS AND OTHER FACILITIES

- U.S. Army Corps of Engineers
- Bureau of Reclamation (USBR)
- Non-Federal

--- INTERMITTENT OR EPHEMERAL STREAM

Figure 1. Upper Rio Grande watershed

Middle Valley System

- Several diversion structures divert river flows to a system of canals.
- Drains capture agricultural returns.
- Head dependent seepage between shallow groundwater aquifer and river (and drains)
 - affected by riparian evapotranspiration

Physical Simulation GW/SW Interaction

- Old Model
 - Uses regression relations for river seepage
 - Feedback loop to correct for too much or too little water in river and drains
 - Model needs flow input in each reach
- Many alternatives explored

Model Reaches

- Middle Rio Grande is divided into 19 separate groundwater reaches along the following six river reaches:
 - Cochiti to San Felipe
 - San Felipe to Central
 - Central to Isleta
 - Isleta to Bernardo
 - Bernardo to San Acacia
 - San Acacia to San Marcial
- Sub-reaches ~ 5 to 7 miles long
- 3 groundwater areas for each reach.
- east of the river, below the river, and west of the river
- 57 groundwater cells

Conceptual Design

Vertical Discretization

Simulation of Stream - Aquifer

System

Stream –aquifer System

If
$$h > RBOT$$

Seepage = Cond (HRIV-h)

Riverbed Conductance = KLW/M

Example GW Object data

Cochiti to San Felipe Reach

Parameter Development – River and Drain objects

- average channel elevation
- open water and wetted sand evaporation equations
- river bed conductance
- average rating table

River and Drain – river bed conductance

$$C = \frac{W_s \bullet L_s \bullet K_v}{T_{sb}}$$

- *C* is conductance
- W_s is stream width, in feet
- L_s is stream length, in feet
- K_v is vertical hydraulic conductivity, in feet/day
- T_{sb} is stream bed thickness, in feet

River and Drain – average rating table

 $Q = (1.486/p) \bullet A \bullet R^{2/3} \bullet S^{1/2}$

Rating Table

Rating Curve

River Routing Method

- Time Lag Method
 - Cochiti to Central
 - Central to San Acacia
 - San Acacia to San Marcial

one day;

one day;

one day

Parameter Development – GW Objects

- aquifer dimensions
- storage coefficient
- deep aquifer heads and elevations
- riparian areas
- ET rate
- initial storage
- initial shallow aquifer elevation (head)
- conductances

GW Object – conductances

$$C_h = \frac{l_f \bullet t_s \bullet k}{l_c}$$

- C_h is horizontal conductance, in ft²/d,
- $l_{\rm f}$ is face length, in ft,
- t_s is saturated thickness, in ft,
- K is horizontal hydraulic conductivity, in ft/d,
- l_c is length between centroids of groundwater objects, in ft.

Canal Seepage

- Canal seepage linked to each GW object
- Seepage simulated as a percent of the flow at the top of the canal
- Range from 14%to 2%

Simulated Wasteways to the River

- Cochiti Division
 - East Side:
 - Pena Blanca Riverside Drain;
 - East Side Santo Domingo Riverside Drain;
 - West Side
 - Seguro Wasteway;
 - End of Sili Main Canal.
- Albuquerque Division
 - East Side
 - Central Waste way;
 - Albuquerque Riverside Drain Wasteway.
 - West Side
 - Upper Corrales Waste way;
 - Lower Corrales Wasteway;
 - Attrisco Wasteway.

- Belen Division
 - East Side
 - Combined Parelta and Lower Parelta Wasteways;
 - Lower San Juan drain outfall;
 - West Side
 - Isleta Wasteway;
 - Belen Drain outfall;
 - Drain U-7 wasteway;
- Socorro Division
 - West Side
 - 9-Mile outfall

Simulation of Crop Areas

- Crop Areas
 - 1975 to 1999 Bureau of Reclamation Crop Survey Reports
 - 2000 to current IKONOS crop area
- Crop ET Rate ET Tool Box
- Farm efficiency 50%
- GW return 5% of excess irrigation water
- SW return the remainder after consumption by crop and GW return

Simulation of Crop Areas

 Crop area and ET rate data entered in an array in the model

URGWOM

Calibration

Calibration Criteria

- Gage flow
- Total Surface Water depletion
- River seepage

Calibration Parameters

- Riverbed Conductances;
- Deep Aquifer Conductances/Heads;
- Canal Seepage;
- GW Return Flow Ratio;
- Percent of Returns at Waste ways.

Rio Grande at Albuquerque- 2005

Rio Grande at Albuquerque- 2002

Rio Grande at Albuquerque- 1996

Rio Grande at San Marcial- 2005

Rio Grande at San Marcial- 2002

Rio Grande at San Marcial- 1996

Residuals of Simulated - Actual Flow, San Felipe

Residuals of Simulated - Actual Flow, Central

Residuals of Simulated - Actual Flow, San Acacia

Residuals of Simulated - Actual Flow, San Marcial

Total Annual Depletions

Actual and Simulated Seepage

URGWOM

Future Work

Future Work

- Recalibrate canal and drain seepage
 - New studies for canal and drain seepage
 - Drain seepage study last February
- Possibly change to one weighted crop
 - Smaller model faster run time
- Calibrate crop deep percolation %
- Calibrate with new values from ET toolbox
- New open-water wetted sand method

Questions