The permittee shall ensure the buffer adjacent to aquatic resource habitat in the main channel geometry (width to depth ratio, substrate composition (sand, silt, clay) is important as is whether excess material is being deposited within or taken from the channel. The permittee shall ensure the mitigation site provides diverse physical features. It is expected that intermittent and perennial streams with well-developed floodplains would provide a greater diversity and number of substrates and physical conditions, including riffle and at a pool.*** In complex stream mitigation or restoration projects, more robust measurement methods including installation of bank pins or other techniques to monitor bioturbance stability may be more appropriate.

<table>
<thead>
<tr>
<th>PS type</th>
<th>Performance Standard</th>
<th>Reference</th>
<th>Target</th>
<th>Monitoring</th>
<th>Applicability</th>
<th>Suggested measure</th>
<th>CFCAM metric</th>
<th>Design considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS No 1</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 2</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 3</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 4</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 5</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 6</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 7</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 8</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 9</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 10</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 11</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 12</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 13</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 14</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 15</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
<tr>
<td>PS No 16</td>
<td>1</td>
<td>Stream and wetland vegetation盖</td>
<td>PS type Performance Standard</td>
<td>Reference</td>
<td>Target</td>
<td>Monitoring</td>
<td>Applicability</td>
<td>Suggested measure</td>
</tr>
</tbody>
</table>

Note: The permittee shall ensure the buffer adjacent to aquatic resource habitat in the main channel geometry (width to depth ratio, substrate composition (sand, silt, clay) is important as is whether excess material is being deposited within or taken from the channel. It is expected that intermittent and perennial streams with well-developed floodplains would provide a greater diversity and number of substrates and physical conditions, including riffle and at a pool.*** In complex stream mitigation or restoration projects, more robust measurement methods including installation of bank pins or other techniques to monitor bioturbance stability may be more appropriate.
This standard may not be applicable in

Groundwater will not be a component in ephemeral streams, and it will only be a component in some intermittent or perennial

The permittee shall ensure the mitigation site supports features capable of storing

Examples of features that can pond water include pits, hummocks, tenajas, step pools, root masses, and high-flow channels.

Hydrologic

All years

The permittee shall ensure the mitigation site shows evidence of subsurface flow

(Note the target for measuring linear aquatic edge can be modified to High Tide

waters, with no obvious hydrologic alteration or restrictions present.

EXCEPTIONS: Ephemeral and

The mitigation site occurs within X feet of the ground surface during the wet

season and Y feet of the ground surface during the dry season.

Case-specific: PM set target

restoration goals).

Case-specific: PM set target (10% as

expected frequency and

supported at a site, including

be critical to determining what

Regional reference sites would

useful for determining the

patch richness description provides a

and should be informed by regional

inform action on the mitigation site.

Case-specific: PM set target

Case-specific: PM set target

water budget

participation in mitigation site.

Monitor changes in ground surface

Wetlands provides a target for always

format, the remaining total aquatic edge area; standard

edge, even if above the target percentage,

expected to vary less than 0.2 ft)

(e.g., +2 ft MSL as-built elevation

levels.

boundary or on the floodplain. Also

Annual observation of evidence,

A season or interval that produces high tide

Technical guidance included in:

- Design criteria/criteria for

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance

- Performance Standard

- Reference

- Target

- Testing

- Applicability

- Integrated measure

- CFCAM metric

- Design considerations

- Guidance
<table>
<thead>
<tr>
<th>PS No.</th>
<th>PS Type</th>
<th>PS Category</th>
<th>Performance Standard</th>
<th>Reference</th>
<th>Target</th>
<th>Timing</th>
<th>Impacts/Abatement</th>
<th>Impacts/Abatement</th>
<th>PCRM metric</th>
<th>Design considerations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrologic</td>
<td>Hydrologic</td>
<td>The permittee shall ensure the mitigation site provides diverse physical features.</td>
<td></td>
<td>All depressional wetlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hydrologic</td>
<td>Hydrologic</td>
<td>The permittee shall ensure the mitigation site provides diverse physical features.</td>
<td></td>
<td>Subsurface outflow/discharge - Permittee shall ensure persistent inflow due to all years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Faunal-Diversity</td>
<td>Faunal-Diversity</td>
<td>The permittee shall ensure a Shannon-Wiener Diversity index of target 0.80 or greater of native, riparian/aquatic species present within the boundary of mitigation site, including plant community.</td>
<td></td>
<td>Bi-annually</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Faunal-Diversity</td>
<td>Faunal-Diversity</td>
<td>The permittee shall ensure that the depth to groundwater is within the range of reference wetland inundation/saturation for X% of growing season.</td>
<td></td>
<td>Annually</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS No</td>
<td>PS type</td>
<td>Performance Standard</td>
<td>Measure</td>
<td>Target</td>
<td>Timing</td>
<td>Applicability</td>
<td>Suggested measure</td>
<td>OJCAM metric</td>
<td>Design considerations</td>
<td>Guidance</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>CFS</td>
<td>Pollutant reduction: measure change in mass balance</td>
<td>Yes</td>
<td>Annual</td>
<td>Yes</td>
<td>Direct measure</td>
<td>Conc inflow - conc outflow</td>
<td>Yes</td>
<td>May not be applicable in seasonal wetlands where FAC species dominate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>