

RESTORATION OF ABANDONED MINES PROGRAM WILLOW CREEK MONITORING WELL INSTALLATION PROJECT CREEDE, COLORADO APRIL 2003

Restoration of Abandoned Mines Willow Creek Monitoring Well Installation Project Creede, Colorado

> Prepared by United State Army Corps of Engineers Albuquerque District

Reviewed by United States Army Corps of Engineers Omaha District

Prepared for Willow Creek Restoration Committee Creede, CO.

April 2003

TABLE OF CONTENTS

List o	of Acronyms & Abbreviations l	Ĩ
1.0	Introduction	1
2.0	Project Location and Description	1
3.0	Physiography and Geology	1
4.0	Drilling and Well Installation	2
4.1	Monitoring Well Installation	
4.2	Soil Boring	
5.0	Tailings Pile Sample Analytical Results	5
6.0	Groundwater Sample Analysis Results	5
7.0	Groundwater Gradient and Metals Plume	7
7.1	Groundwater Gradient and Movement	
7.2	Lead in Groundwater	8
8.0	Conclusions and Recommendations	8
9.0 R	eferences	

LIST OF TABLES

Table 1 Monitoring Well Coordinates, Screened Intervals and Stick-Up Height	
above Ground Level	3
Table 2 Monitoring Well Development Final Measurements	4
Table 3: Tailings Pile Analytical Results	5
Table 4: Tailings Pile Wet Chemistry Result	5
Table 5: Monitoring Well Purge Log (final readings)	6
Table 6: Groundwater Sample Analytical Results for Metals	6
Table 7: Groundwater Sample Wet Chemistry Results	7
Table 8: Groundwater and Well Elevation Data of Pre-Existing Wells	8

LIST OF FIGURES

Figure 1: Regional Location Map	10
Figure 2: Site Map	11
Figure 3: Groundwater Zinc Concentrations	
Figure 4: pH Plume	
Figure 5: Groundwater Lead Concentrations	

APPENDICES

Appendix A: Chemical Data Quality Assessment Report
Appendix B: Well Logs
Appendix C: Well Diagrams
Appendix D: Photo Log
Appendix E: Field Log Books

List of Acronyms & Abbreviations

bgs	below ground surface
CDMG	Colorado Division of Mining and Geology
DO DQCR DQO	Dissolved Oxygen Daily Quality Control Report Data Quality Objective
GPS	Global Positioning System
ID	Identification
"J"	Estimate Code
К	Saturated Hydraulic Conductivity
MCL MCLG mL mg/L mg/Kg mm MSL	EPA Maximum Contaminant Level EPA Maximum Contaminant Level Goal Milliliter Milligram per Liter Milligram per Kilogram Millimeter Mean Sea Level
MW MWMP NSDWR	Monitoring Well Meteoric Water Mobility Procedure EPA National Secondary Drinking Water Regulations
NAD NTU	North American Datum Nephelometric Turbidity Unit
pH ppm	A measure of the Hydrogen Ion Concentration of materials Parts Per Million
QA QC	Quality Assurance Quality Control
"R" R RAMS	Unusable Code Percent Recovery Restoration of Abandoned Mine Sites
SB	Soil Boring
USDAFS	United States Department of Agriculture - Forest Service

USACE USEPA UTM	United States Army Corps of Engineers United States Environmental Protection Agency Universal Transverse Mercator Coordinates
WRDA	Water Resources Development Act
μs/cm μg/Kg μg/L μmho/cm	Microsiemen per Centimeter (a measure of conductivity) Microgram per Kilogram Microgram per Liter µs/cm (Microsiemen per Centimeter (a measure of conductivity)

1.0 Introduction

The United States Army Corps of Engineers (USACE) is provided authority for Restoration of Abandoned Mine Sites (RAMS) through the Water Resource Development Act (WRDA) 1999, Section 560. This program is a regionally focused and stakeholder responsive program for the restoration of abandoned and inactive non-coal mines where water resources (ecosystem/habitat) were degraded by past mining practices. This authority is intended to allow the USACE to provide support to agencies that manage lands impacted by past mining.

The objective of the project was to determine metals loading from a tailings pile on the Willow Creek drainage basin, approximately 1 mile south of the town of Creede. This project was also intended to enhance past and future Willow Creek Restoration Committee studies. In cooperation with the Willow Creek Restoration Committee, United States Department of Agriculture - Forest Service (USDAFS), Colorado Division of Mining and Geology (CDMG), United States Environmental Protection Agency (USEPA), and the current landowner (Creede Resources Inc.), the USACE installed five monitoring wells, one soil boring, and collected soil and groundwater samples for chemical analysis.

2.0 Project Location and Description

Willow Creek is a tributary to the Rio Grande, located south of Creede, in southwestern Colorado. Refer to Figure 1 for regional project location and Figure 2 for general location. Tailings from silver mines of the Creede Silver Mining District are located in a large waste/tailings pile in the alluvial valley of Willow Creek, downstream from the town. It is suspected that the tailings are a source of metals contamination to groundwater that may discharge to groundwater, impacting Willow Creek and then migrating down stream to the Rio Grande, thereby degrading the water quality. This project was the top priority for funding by the CDMG. The contaminants of concern (mainly zinc) from Willow Creek may affect the Rio Grande River. To assist in evaluating the possible release of zinc to the Willow Creek from the tailings, the USACE implemented the Willow Creek Site-Specific Addendum (SSA) to the RAMS Work Plan. All work performed during this investigation was performed in accordance with the approved SSA.

3.0 Physiography and Geology

The town of Creede is situated in the San Juan Mountains in Mineral County, CO. Elevation of Creede is approximately 8800 feet above Mean Sea Level (MSL). The Willow Creek flows through the center of town in a concrete lined channel. The creek originates about four miles north of Creede, at the Continental Divide in the San Juan Mountains. Creede is situated at the base of steeply sloped mountains and cliffs, on the northern portion of the Creede Lake Beds. The Creede Lake Beds were derived from the collapsed Creede Caldera. The surrounding foothills, mountains and cliffs are comprised mostly of faulted igneous formations and reflect the Tertiary volcanic activity of the San Juan Mountain Range and the caldera collapse.

4.0 Drilling and Well Installation

The USACE arrived on site during the week on October 21, 2002. Six borings were advanced; five were made in to monitoring wells. One soil boring was advanced in the waste pile for chemical profiling and backfilled. All borings were advanced with a Gus Peck 1300C with hollow-stem auger and was adapted to air and direct-rotary drilling when needed. Because of the large size gravel and cobble encountered during drilling, air and direct-rotary was used in some of the borings at depths where auger refusal was encountered. Air was also used to cleanout the bottom of the boreholes to assist in setting casing and sand pack. Borings were primarily drilled with a 4.25-inch auger. All the monitoring wells were completed with 2-inch diameter schedule 40, Poly Vinyl Chloride (PVC) pipe casing with o-ring joints, and 10 feet of 10-slot screen with a 20/40 silica sand pack. Because of large sized gravel and cobbles, samples could not be collected except in the one soil boring (SB1) and the top 5 feet of monitor well 18 (MW18). All other boring material descriptions were based on cuttings.

Because of the shallow nature of these wells and geologic conditions, grout was not used during completion. In all cases, with the exception of MW17, borings only had 3 to 5 feet of open borehole to the surface above the sand pack. In all cases, the gravel would cave in if augers were removed from the borings. For these reasons, the wells were completed with hydrated bentonite through hollow-stem augers from the top of the sand pack to the surface.

4.1 Monitoring Well Installation

The following monitoring well installation descriptions include casing depths and total depth (TD) of the borings. Casing depth was measured and reported from TOC and boring TD was measure and recorded from ground surface.

MW16 has a casing depth of 19.3 feet below the top of casing (TOC). The well is located near the toe of the tailings pile, between the pile and the railroad tracks See Figure 2 for locations and Table 1 for Universal Transverse Mercator (UTM) coordinates. During advancement of the first foot, tailings were observed in the cuttings. At 5 feet bgs, an approximate 1-foot layer of silty-clay was noted. The remainder of the boring contained gravel with about a 50% sand. Groundwater was encountered at 7.7 feet below ground surface (bgs). Boring TD measured at 18 feet bgs. Refer to drilling logs and completion diagrams for further description.

MW17 has a casing depth of 24.95 feet below the TOC. The well is located south of the tailings piles, approximately ¹/₄ mile, in a dry channel. Refer the Figure 2 and Table 1. Gravel up to 40 mm in size was encountered in the first five feet. The remainder of the boring contained gravel with approximately 50% sand. Groundwater was encountered at 12.3 feet bgs. Boring TD was measured at 23.6 feet bgs. During the completion of this well, the borehole collapsed above the sand pack. A bentonite seal was placed above the collapsed segment to the surface. Because of the geologic nature of this area, it is doubtful that the collapse will cause adverse functionality of the well. The well developed adequately, and when groundwater samples were collected, turbidity was

measured at 2.9 Nephelometric Turbidity Units (NTU), a measure of water clarity. Refer to the drilling log and completion diagram for further description.

MW18 has a casing depth of 17.25 feet below the TOC. The well is located south of the tailings piles, approximately 500 feet north of MW17. Refer to Figure 2 and Table 1. Because the location of MW18 is located on soil, a continuous core barrel was used during the advancement of the first 5 feet. $1-\frac{1}{2}$ feet of topsoil was collected in the core barrel. The core barrel then plugged with gravel, and additional recovery of samples was not feasible. Other than the first $1-\frac{1}{2}$ feet, the boring contained gravel with 50% sand. Groundwater was encountered at 6.5 feet bgs. Boring TD was measured at 15.5 feet bgs. Refer to the drilling log and completion diagram for further description.

MW19 is located on the west side of the railroad tracks, approximately 400 feet south of the tailings piles. Refer to Figure 2 and Table 1. After drilling the boring to TD at the original location, gravel at the bottom heaved up into the hollow-stem auger. While attempting to set the screen and casing, the borehole collapsed. The borehole could not be salvaged. 10 feet of casing was recovered (see photo log, Appendix D). The remainder, the screen, was drilled out. The borehole was then allowed to cave-in on itself. A new location was selected approximately 3 feet to the south of the original location. Cuttings were the same as noted in other well borings, gravel with approximately 50% sand. Groundwater depth was not noted during drilling, but during development, groundwater was measured at 7.7 feet below the TOC. Boring TD was measured at 15.5 feet bgs, and depth of the casing was measured at 16.4 feet below TOC. Refer to the drilling log and completion diagram for further description.

MW20 has a casing depth of 18.38 feet below the TOC. The well is located just southwest of the tailings pile, on the east side of the railroad tracks. Refer to Figure 2 and Table 1. This well boring also contained mostly gravel (ranging up to 24mm in size) with approximately 50% sand to TD. Groundwater was encountered at 7.7 feet bgs. Boring TD was measured at 20.5 feet bgs. Refer to the drilling log and completion diagram for further description.

Well	Easting	Northing	Stick-Up	Screen Interval
MW16	330904	4189823	2 feet	4.0 to 14 feet bgs
MW17	331464	4189073	2.3 feet	12.6 to 22.6 feet bgs
MW18	331398	4189224	2 feet	5.4 to 15.4 feet bgs
MW19	331150	4189336	2 feet	4.0 to 14 feet bgs
MW20	331050	4188564	1.8 feet	7.5 to 17.5 feet bgs
SB1	331002	4189710	N/A	N/A

 Table 1 Monitoring Well Coordinates, Screened Intervals and Stick-Up Height above Ground Level

Note: Coordinates are in UTM zone 13, collected by a hand held GPS unit and have a 5-meter (~15-foot) accuracy; bgs =below ground surface

After the completion of the monitoring wells, each well was developed using a direct current (DC) battery powered purge pump (see photo log). Table 2 below shows the volume of purged groundwater and the final groundwater quality parameters measured during development.

Well	PH	Conductivity	Temperature (°C)	Color	Gallons Purged
MW16	4.02	5450 µs/cm	9.9	Milky	80
MW17	6.30	333 µs/cm	10.6	Milky	56
MW18	5.61	$2.9 \text{ x } 10^6 \mu\text{s/cm}$	9.6	Milky	30
MW19	4.02	1480 µs/cm	11.7	Clear	40
MW20	4.62	4842 µs/cm	9.9	Clear	60

Table 2 Monitoring Well Development Final Measurements

Microsiemens per centimeter (μ s/cm) = a measure of conductivity, Temperature recorded in Celsius (°C); the underlined value for conductivity at MW 18 was most likely an instrument error or the meter was read incorrectly.

4.2 Soil Boring

One soil boring (SB1) was advanced into the tailings pile. The purpose of the boring was to collect samples for chemical profiling. The boring was advanced to 15 feet below the top of the tailings pile. The entire boring was advanced with a continuous core barrel, and a total of five soil samples and one blind duplicate sample were collected. Samples were collected at 5 inches below the surface, just below the cap material, at 3 feet, 7 feet, 10 feet and 15 feet. The duplicate sample was taken at 3 feet. Sample identification is CO-WC-SB1-05 for the sample collected at 5 inches, and the remaining samples are identified as CO-WC-SB1-3 for 3 feet, SB1-7 for 7 feet, etc... The blind duplicate sample was identified as CO-WC-SB1-20

Three, 5-foot continuous core barrels were advanced to a total depth of 15 feet. The first 5-foot core barrel returned about 50% recovery of very fine grained, light brown tailings. The second 5-foot core barrel also returned about 50% recovery of the same tailings as noted in first core barrel. The third core barrel advanced returned 100% recovery; however, only the first 0.2 feet of the core contained tailings. From 10.2 feet to 14.4 feet, representing 0.2 to 4.4 feet of the 5-foot core barrel contained a gray silty-clay. The remaining 0.6 feet was organic soil and black, with small roots. Small green stains were also noted in the organic soil. Sample CO-WC-SB1-15 was collected from the organic soil portion of this core. Sample CO-WC-SB1-10 was collected from the top of the silty-clay, in the tailings portion (at 10 feet). The silty-clay was noted in MW16 at 5 to 6 feet bgs. MW16 was near the toe of the tailings pile. None of the other borings advanced in this investigation contained clay or silt.

During the planning phase of the investigation, available boring information from previously drilled wells was reviewed. None of the drilling logs for the existing wells indicated clay or silt at any depth. The depth of the silty-clay layer may correlate between MW16 and SB1. Ground surface of SB1 is approximately 5 to 8 feet higher than that of MW16. However, an elevation survey would have to be performed to make any definitive conclusion. No groundwater was encountered during the advancement of this soil boring.

Extra care was taken while backfilling SB1 due to the silty-clay layer. When the core barrel was removed from the soil boring, the borehole remained open and integrity was maintained. To maintain the integrity of the silty-clay layer, hydrated bentonite pellets

were placed in the borehole from TD to 9.8 feet below the top of the tailings pile. The thickness of the bentonite encompassed the entire thickness of the silty-clay layer, plus 0.4 feet above and 0.6 feet below. The tailings that were removed during the advancement of the soil boring were placed back in the borehole above the bentonite plug to a depth of 1.5 feet below the top of the tailings pile. The top 1.5 feet was then filled with the cap material. The drilling rig was used to compact the cap material to ground level. Refer to the drilling log and abandonment diagram for further detail (Appendices B and C).

5.0 Tailings Pile Sample Analytical Results

The results of the tailings pile sample chemical analytical results are presented in Table 3. Each sample was given a unique identification corresponding to sample depth. Sample ID CO-WC-SB01-3 was thoroughly homogenized and split. The split sample was labeled CO-WC-SB01-20 and submitted to the laboratory as a blind duplicate. Of the samples collected, lead and cadmium were elevated, compared to region 6 and 9 soil screening guidance (EPA 2000; EPA 2002). Lead appeared to decrease in organic soil as indicated by the samples collected at 15 feet below the top of the tailings pile. Cadmium was only detected at an elevated concentration in the sample collected from 15 feet below the top of the tailings pile, in the organic soil. Additionally, leachate pH was measured in each tailings pile sample. With the exception of CO-WC-SB01-05, all collected samples exhibited low pH (refer to table 4).

Analyte	CO-WC- SB01-05	CO-WC- SB01-3	CO-WC- SB01-7	CO-WC- SB01-10	CO-WC- SB01-15	*CO-WC- SB01-20
Aluminum	3630	635	1220	1100	1100	614
Cadmium	2.0	9.49	4.0	13.4	2560	11
Calcium	911	190	230	570	1430	72
Copper	123	78.1	33.8	157	18	86.8
Iron	14100	6490	15300	16400	10500	7430
Lead	3170	3460	6260	4190	314	3690
Magnesium	917	20 J	37	38	2570	20 J
Manganese	210	9.77	10.3	11.0	247	9.47
Zinc	517	1620 B	622 B	2960 B	3920 B	1860 B

 Table 3: Tailings Pile Analytical Results

Note: B = Analyte also detected in method blank; J = Estimated concentration below laboratory limit; * = Duplicate sample of CO-WC-SB01-3; all values reported in milligrams per kilogram (mg/Kg); bolded values indicate above regulatory limits

 Table 4: Tailings Pile Wet Chemistry Result

Parameter	CO-WC- SB01-05	CO-WC- SB01-3	CO-WC- SB01-7	CO-WC- SB01-10	CO-WC- SB01-15	*CO-WC- SB01-20
PH	8.45	3.74	2.75	3.25	3.97	3.34
Conductivity	93.9µmho/cm	249µmho/cm	1400µmho/cm	914µmho/cm	2320µmho/cm	330µmho/cm

Note: µmho/cm = µs/cm which is Microsiemens per centimeter (a measure of conductivity)

6.0 Groundwater Sample Analysis Results

Groundwater samples were collected from the newly installed monitoring wells on November 17 and 18, 2002. Samples were collected after groundwater was thoroughly purged from each monitoring well and groundwater quality parameters stabilized. A Geopump[™] 2, peristaltic pump was used to purge the wells. Monitoring well purging

parameters are shown in Table 5. When collected, each groundwater sample was given a unique sample identification number corresponding to the monitoring well identification. For example, the sample collected from MW16 was identified as CO-WC-MW16. The groundwater sample collected from MW20 was split and submitted to the lab as a blind duplicate. This blind duplicate groundwater sample was labeled CO-WC-MW21. Results of the groundwater analytical analysis are presented in Table 6. Table 7 presents wet chemistry results that include values for chloride, sulfate and alkalinity.

Parameters	CO-WC- MW16	CO-WC- MW17	CO-WC- MW18	CO-WC- MW19	CO-WC- MW20
Water Level (feet below TOC)	8.96	13.24	8.07	7.67	8.27
РН	2.97	5.33	5.06	3.93	4.22
Conductivity (µs/cm)	4380	380	3240	1116	4230
Temp (°C)	10.3	10.2	8.6	10.8	9.3
Turbidity (NTU)	7	2.9	10	8	15
Gallons Pumped	6	6.5	7	5.5	6

Table 5: Monitoring Well Purge Log (final readings)

Bolded values exceed National Secondary Drinking Water Regulations (NSDWR) – ph secondary standard is 6.5 to 8.5; Microsiemens per centimeter (µs/cm) = a measure of conductivity; Nephelometric Turbidity Unit (NTU) = A measure of clarity

Analytes	Regulatory Limit	CO-WC MW16	CO-WC MW17	CO-WC MW18	CO-WC MW19	CO-WC MW20	*CO-WC MW21
Aluminum	200 NSDWR	174000	1120	17200	28200	38200	38200
Cadmium	5.0 MCL	1490	37.1	723	586	834	840
Calcium	NA	71300	41900	528000	59400	197000	201000
Copper	1.3 MCL	4180	5 J	700	488	271	261
Iron	NA	110000	40 J	160	140 J	619000	618000
Lead	15 MCLG	30	U	4J	7 J	36	35
Magnesium	NA	41200	4680	57000	14600	53900	54700
Manganese	0.5 NSDWR	92800	275	132000	31600	144000	143000
Zinc	5.0 NSDWR	339000	26600	366000	132000	458000	425000

Note: J = Estimated concentration below laboratory limit; u = analyte was analyzed for but not detected at or above the sample reporting limit; * = Duplicate sample of CO-WC-MW-20; all values reported in micrograms per liter (μg/L); bolded values indicate above regulatory limits (Maximum Contaminant Level (MCL), Maximum Contaminant Level Goal (MCLGs) and NSDWR)

Parameter	Regulatory Limit	CO-WC MW16	CO-WC MW17	CO-WC MW18	CO-WC MW19	CO-WC MW20	*CO-WC MW21
Sulfate	250 NSDWR	3600 D	170 D	2300 D	690 D	3300 D	3380 D
Chloride	250 NSDWR	4. J	u	7.7	2. J	4. J	4. J
Alkalinity (as CaCO ₃)	NA	u	u	58.	u	56.	54.
Bicarbonate Alkalinity (as CaCO ₃)	NA	u	u	58.	u	56.	54.
Carbonate Alkalinity (as CaCO ₃)	NA	u	u	u	u	u	u

 Table 7: Groundwater Sample Wet Chemistry Results

Note: J = Estimated concentration below laboratory limit; u = analyte was analyzed for but not detected at or above the sample reporting limit; D = Result quantitative from a 1:2 dilution; * = Duplicate sample of CO-WC-MW20; all values reported in mg/L; Bolded values exceed NSDWR.

7.0 Groundwater Gradient and Metals Plume

Based on the chemical analytical results of groundwater obtained during this investigation, zinc could not be correlated between the newly installed monitoring wells. Zinc concentrations were above the NSDWRs, but the distribution of concentrations among the newly installed wells was not conclusive as to plume movement and origin (See Figure 3). Additionally, zinc concentrations in groundwater did not correlate with the direction of groundwater movement. Lead concentrations correlate to groundwater movement. See section 7.2.

7.1 Groundwater Gradient and Movement

Based on the historic elevation data collected from pre-existing monitoring wells, (MW1 through MW15) groundwater flow is in a southerly direction with a slope of ~ 0.04 feet/feet, based on survey data obtained from the Willow Creek Restoration Committee (Refer to Figure 2). The groundwater contours shown in Figure 2 were representative of groundwater depths collected during November 2001 through November 2002. It appears that groundwater flows with the surface topography. Table 7 below contains the data points used to construct the groundwater contours represented in Figure 2.

Based on the grain size of geologic material encountered during drilling, saturated hydraulic conductivity of distributed data is estimated at $10^{2.5}$ to $10^{4.5}$ feet/day (USGS, 1995). Porosity of geologic material, groundwater slope, and saturated hydraulic conductivity were estimated to determine the groundwater velocity. Coarse gravel has a porosity of 25% to 40% (Driscoll, 1995). Groundwater velocity is determined as:

 $v = (K \div n) \times \text{slope of water table}$

where:

```
v = velocity
K = saturated hydraulic conductivity
n = porosity (USGS, 1995)
```

Groundwater velocity was estimated at .04 feet/minute to 2.2 feet/minute. Hydrogeological testing would be required to determine a more precise estimate of groundwater velocity.

Well	UTM Coordinates Zone 13 / WGS 1984		Elevation of Monitoring Wells in	Groundwater Elevations in feet from MSL		
ID	Northing	Easting	feet From TOC	11-2001	4-2002	11-2002
MW1	4188119.670	332063.001	8616.265	8597.965	8597.065	8597.265
MW2	4188833.768	331680.472	8657.605	8644.805	8647.555	8646.478
MW3	4188612.161	331312.807	8652.747	8649.447	8649.447	8649.507
MW5	4189118.920	331317.488	8681.643	8674.883	8677.443	8676.256
MW7	4189300.679	331161.933	8698.722	8690.872	8691.422	8691.222
MW8	4189384.654	331184.927	8697.023	8694.093	8694.423	8694.506
MW9	4189556.154	331078.995	8718.465	8712.465	8712.565	8712.418
MW10	4189545.859	331028.133	8714.224	8712.034	8712.174	8712.101
MW11	4189697.661	330980.669	8728.557	8723.287	8723.507	8723.250
MW12	4189800.085	330869.110	8733.356	8732.136	8730.856	8731.743
MW13	4190000.896	330732.788	8748.614	8746.504	8746.814	8746.621
MW14	4190132.107	330771.897	8758.389	8756.039	8756.989	8756.372
MW15	4190276.992	330832.974	8768.682	8763.102	8763.932	8763.309

Table 8: Groundwater and Well Elevation Data of Pre-Existing Wells

Source: Willow Creek Restoration Committee

7.2 Lead in Groundwater

Soil samples collected in the tailing pile contained elevated levels of lead. The lead may be leaching from the piles as noted by the groundwater chemical analytical results (refer to Figure 5).

8.0 Conclusions and Recommendations

With groundwater data received from the Willow Creek Restoration Committee, the USACE estimated the general flow of groundwater at the site. However, to determine groundwater flow velocity, transmisivity and other groundwater hydraulic characteristics, pump tests need to be performed. Elevated levels of lead and zinc were detected in the groundwater. Zinc could not be related to an origin, nor could a migration direction be determined. Lead appears to migrate with the groundwater, observing that the newly installed monitoring wells furthest from the tailings pile contained the least concentrations of lead.

The soil boring in the tailing pile contained elevated levels of cadmium, lead and zinc. The one sample collected in organic soil, beneath the tailings pile contained less lead than that detected in the tailings. Concentrations of zinc in the organic soil and the tailings pile were similar. Concentrations of cadmium were higher in the organic soil than the tailings pile.

USACE recommends that the Willow Creek Restoration Committee compare their groundwater chemical data with these data presented in this report. By correlating the two sets of data, the migration of lead and zinc in groundwater may be better understood.

9.0 References

- 1. Fletcher G. Driscoll, Ph.D. (Driscoll, 1995), Groundwater and Wells, Johnson Screens, St. Paul, Minnesota, 1995.
- 2. United States Environmental Protection Agency, Region 9 (EPA, 2000), Preliminary Remediation Goals, San Francisco, CA, 2002.
- 3. United States Environmental Protection Agency, Region 6 (EPA, 2002), Human Health Medium Specific Screening Levels, Dallas, TX, 2002.
- 4. United State Environmental Protection Agency (EPA, 2001), National Primary Drinking Water Regulations, Washington DC, 2001.
- 5. United States Geological Survey (USGS, 1995), Water-Supply Paper 2220 Basic Ground-Water Hydrology, United States Printing Office, 1995.
- 6. United States Geological Survey, Creede 7.5 Minute Quadrangle Topographic Map, Denver, CO., 1986.
- 7. Willow Creek Restoration Committee, Personal Communication, Groundwater Elevation Data from December 2001 to December 2002, Creede, CO, 2003.

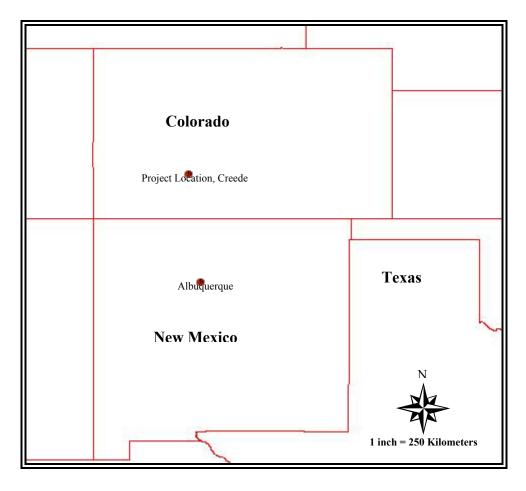
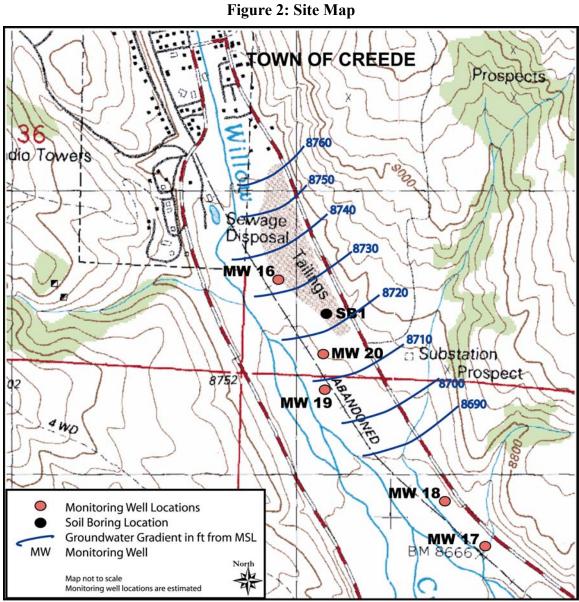
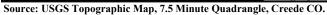




Figure 1: Regional Location Map

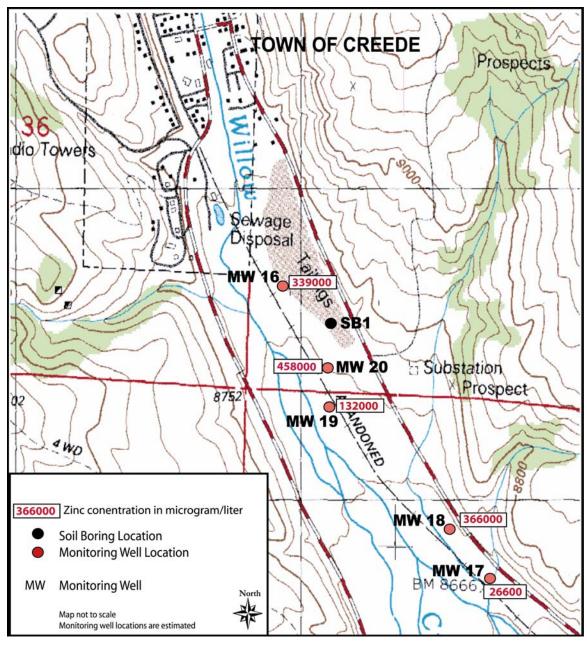
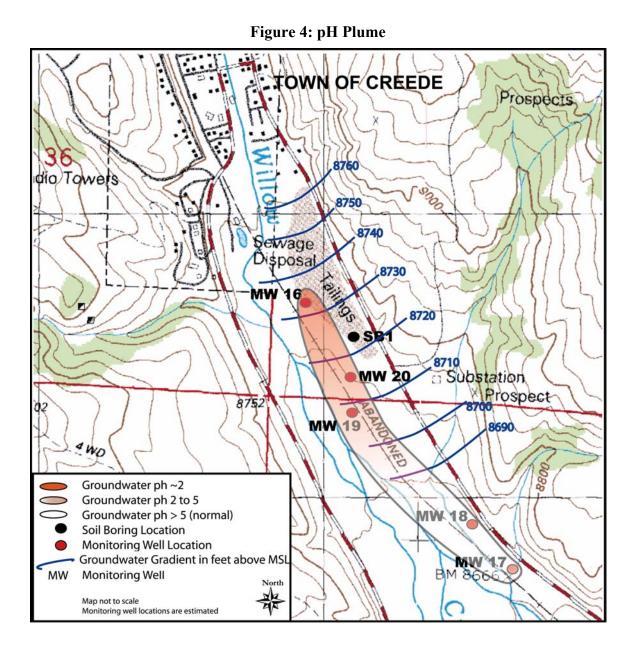
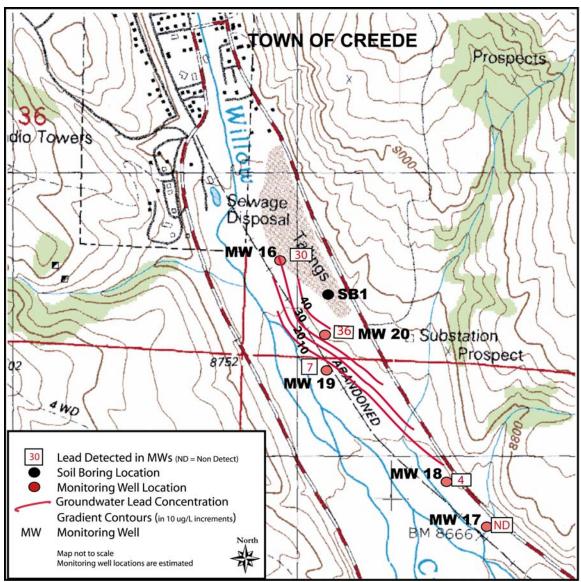




Figure 3: Groundwater Zinc Concentrations

Figure 5: Groundwater Lead Concentrations

Source: USGS Topographic Map, 7.5 Minute Quadrangle, Creede CO.

APPENDICES

APPENDIX A: CHEMICAL DATA QUALITY ASSESSMENT REPORT

OMAHA DISTRICT U.S. ARMY CORPS OF ENGINEERS

Chemical Data Quality Assessment Report (CDQAR)

For

Soil and Groundwater Samples Obtained at

Willow Creek-Creede, Colorado

February 2003

TABLE OF CONTENTS

Section	Page
LIST OF TABLES and APPENDICES	ii
LIST OF ABBREVIATIONS AND ACRONYMS	iv - v
1 INTRODUCTION	
1.1 QUALITY CONTROL SUMMARY	
1.1 QUALITY CONTROL SUMMARY	
2 PROJECT DESCRIPTION	
2.1 PROJECT PURPOSE	
2.2 DATA QUALITY OBJECTIVES	
2.2.1 Data Collected	
3 FIELD QUALITY ONTROL PROCEDURES	
3.1 PROJECT PLANNING	3-1
3.2 DOCUMENTED FIELD ACTIVITIES	
3.2.1 Samples	
3.2.2 Management of Investigation Derived Waste (IDW)	
No IDW was generated during this investigation except for disposable so	impling equipment such as gloves,
plastic cups, etc., which were disposed of in a dumpster 3.2.3 Decontamination Procedures	
<i>3.2.4 Other Documentation and Reporting of Field Activities</i>	
3.2.5 Sample Labeling, Handling, and Shipping	3-1
3.3 FIELD QUALITY CONTROL SAMPLES	
4 EVALUATION OF DATA QUALITY	
4.1 LABORATORY QUALITY CONTROL SAMPLES	
4.1.1 Laboratory Control Samples (LCS)	
4.1.2 Method Blank Analyses	
4.1.3 Surrogate Spike Analyses	
4.1.4 Matris Spike/Matrix Spike Duplicate (MS/MSD) 4.2 LABORATORY DATA VALIDATION ACTIVITIES	
4.2 LABORATORY DATA VALIDATION ACTIVITIES 4.3 PROJECT CHEMIST QUALITY EVALUATION	
5 RESULTS OF QUALITY CONTROL ACTIVITIES AN	
τ.	
5.1 FIELD QC PROCEDURES AND FIELD QC ANALYSES	
5.1.1 Documentation of Field Quality Procedures5.1.2 Field Duplicate Analyses	
5.2 LABORATORY QC PROCEDURES AND LABORATORY QC AN	
5.2.1 Initial Sample Inspection and COC Documentation	
5.2.2 Holding Times	
5.2.3 Method Blank Analyses	
5.2.4 Laboratory Control Samples	
5.2.5 Surrogate Recovery	
5.2.6 MS/MSD Recovery 5.2.7 Completeness of Data Packages	
5.2.7 Completeness of Data Packages 5.3 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPLETI	ENESS AND COMPARABILITY
(PARCC)	

	5.4 DATA TABLES	5-4
	THE QUALIFIED DATA IS GIVEN IN TABLE 1, 2, 3, AND 4 OF APPENDIX A.	
	5.5 ANALYTICAL DATA PACKAGE	
	DATA SHEETS AS OBTAINED FROM THE ENVIRONMENTAL CHEMISTRY LABORATORY ARE GIVEN AS A HA	ARD COPY
	OF THE ANALYTICAL DATA PACKAGE.	5-4
6	CONCLUSIONS	6-1

LIST OF TABLES

Table 3-1 Sample Containers Preservation, and Holding Times For Surface water Samples Table 4-1 Analytical Batches

LIST OF APPENDICES

Appendix A Data Tables of validated data from soil and groundwater samples

ACRONYMS/ABBREVIATIONS

ADP ASTM °C CDQAR CENWO COC DQCR DQOS DUP ECB eV EPA FSP Ft I.D. IDW Kg L LCS LCSD LIMS MDL mg/kg mg/L mg Min ml MS/MSD MSL MW N/A ND PID PD PQL QA QAPP QC RL RPD SSHP	Analytical Data Package American Standard Testing Materials Degrees Celsius Chemical Data Quality Assessment Report Corps of Engineers, Omaha District Chain-of-Custody Daily Quality Control Report Data Quality Objectives Duplicate Environmental Chemistry Branch Electron volt Environmental Protection Agency Field Sampling Plan Foot/Feet Inner Diameter Investigative Derived Waste Kilogram Liter Laboratory Control Sample Duplicate Laboratory Control Sample Duplicate Laboratory Control Sample Duplicate Laboratory Information Management System Method Detection Limit Milligrams per kilogram Milligram per Liter Milligram Minute Milliliters Matrix Spike/Matrix Spike Duplicate Mean Sea Level Monitoring Well Not Applicable non-detect Photoionization Detector Parts per Billion (measured in water as ug/L) Practical Quantitation Limit Quality Assurance Quality Assurance Quality Assurance Project Plan Quality Control Reporting Limit Relative Percent Difference Site Safety Health Plan
SSHP SOP	Site Safety Health Plan Standard Operating Procedure
90F	Standard Operating Flocedure

ug/L	Micrograms per Liter
U.S.	United States
USACE	United States Army Corps of Engineers

1 INTRODUCTION

1.1 QUALITY CONTROL SUMMARY

This Chemical Data Quality Assessment Report (CDQAR) describes the operations and procedures followed by U. S. ARMY Corps of Engineers (USACE) to conduct the investigation of the surface soil and groundwater samples obtained from Willow Creek. Field work was performed by USACE Omaha District personnel. Analytical services were provided by the U. S. Army Corps of Engineers, the Environmental Chemistry Branch (ECB) Laboratory, located in Omaha, Nebraska and selected analyses at Continental Analytical Services, Inc., Salina Kansas.

The field and sample analyses were performed in accordance with the Work Plan for the Restoration of Abandoned Mine Sites prepared by U.S. Army Corps of Engineers, Omaha District, Omaha, Nebraska, July 2002 and the Site Specific Addendum for the Willow Creek area, 4 Oct, 2002.

This CDQAR includes a summary of the quality assurance (QA) and quality control (QC) procedures and an evaluation of data quality and data usability with respect to Data Quality Objectives (DQOs) established for this field investigation.

1.2 REPORT ORGANIZATION

Section 2 of this report provides a discussion of project and data quality objectives. Procedures employed to control and evaluate the quality of sample collection, transportation, storage, and analysis are presented in Section 3. Section 4 discusses data evaluation, and the results of QC evaluations are in Section 5. Conclusions and recommendations are presented in Section 6.

2 PROJECT DESCRIPTION

2.1 PROJECT PURPOSE

The purpose of this investigation is to collect soil samples from within a mine tailings pile to determine metals loading from the tailings into Willow Creek. Groundwater samples are obtained from monitoring wells that are located in an area to try to define a suspected groundwater contaminant plume migrating from the tailings pile. The metals, alkalinity, chloride, and sulfate analysis of groundwater and the soil and water leachate analysis of the mine tailings will determine the effect on the adjacent willow creek. Laboratory addresses are given below:

US Army Corps of Engineers Environmental Chemistry Branch (ECB) Laboratory 420 South 18th Street Omaha, NE 68102

Continental Analytical Services, Inc 1804 Glendale Road Salina, Kansas 67401

The laboratories report all non-detect results as "u". The non-detect values are given in the data tables as "u" meaning less than the Method Detection limits (MDL). The MDL is the minimum concentration of a substance that can be measured and reported with 99 per cent confidence that the analyte concentration is greater than zero, and is determined from analysis of a sample in a given matrix containing the analyte. The Reporting Limit (RL) is determined by the laboratory and takes into account impacts from sample matrix, sample preparation, and instrument limitations. The RL represents the concentration at which the laboratory can both determine the presence of an analyte and accurately quantify the amount present. The sample quantitation limit or laboratory reporting limit are reported interchangeably. The laboratory reported detections below the RL and higher than the MDL with a "J" laboratory qualifier, which indicates a greater degree of uncertainty associated with the quantitative result. The "J" values are considered valid and useable. Reporting limits may increase for an individual environmental sample due to high concentrations of target analytes, matrix effects, or other interferences.

2.2 DATA QUALITY OBJECTIVES

The DQOs for this site are based on the data objective and sensitivity criteria as given in the General Work Plan, July 2002. The data is not compared to environmental regulations, but is obtained to give an indication of the metals contamination migrating from the mine tailings pile.

2.2.1 Data Collected

The data collected from the mine tailings and groundwater from the Willow Creek area is designated as definitive data. Field measurements obtained during groundwater monitoring such as pH, temperature, conductivity, and turbidity are reported in the field logs and is not a

part of this data package.

Definitive level data from the monitoring wells and soil samples were analyzed at off-site laboratories, and following sections present the quality control procedures, and validation procedures. The result of the quality control process is presented in Section 5.

3 FIELD QUALITY ONTROL PROCEDURES

3.1 PROJECT PLANNING

The field investigation was conducted as described in the Site Specific Addendum for Willow Creek, 4 October, 2002. The plan was written by CENWO to ensure the quality of data derived from the investigation. The plan provides a discussion of the project work and general procedures to be followed for field and laboratory activities.

3.2 DOCUMENTED FIELD ACTIVITIES

This section summarizes the equipment, procedures, and methods undertaken to insure quality sample collection activities. Investigation activities and QC procedures were recorded and documented in the field using appropriate field forms. Prior to sample collection, as well as between sample locations, field equipment was decontaminated.

3.2.1 Samples

A total of five (5) groundwater samples plus one (1) duplicates were obtained by CENWO personnel between November 17 and 18, 2002. Five (5) soil samples plus one (1) duplicate were obtained October 23, 2002.

3.2.2 Management of Investigation Derived Waste (IDW)

No IDW was generated during this investigation except for disposable sampling equipment such as gloves, plastic cups, etc., which were disposed of in a dumpster.

3.2.3 Decontamination Procedures

The field instruments were decontaminated in the field as described in the Standard Operating procedures given in the General RAMS Work Plan, July 2002..

3.2.4 Other Documentation and Reporting of Field Activities

All field activities were thoroughly documented in indelible ink using the following forms:

- Field Notebook
- Chain of Custody Record

CENWO field personnel initiated Chain of Custody (COC) documentation as samples were collected and selected for laboratory analysis. Sample custody was maintained from sample collection through the completion of the laboratory analysis.

3.2.5 Sample Labeling, Handling, and Shipping

The sampling team performed sample collection, sample labeling, and sample shipping. Samples were collected in the appropriate sample containers provided by the ECB Laboratory. The sample containers were identified with waterproof labels and all writing was completed in indelible ink.

Labeled samples were placed in sealed Ziplock brand bags and packed in waterproof plastic ice

chests with sufficient packaging material placed around and between the sample jars. Ice was double bagged and placed on the bottom of the cooler, and around the sample containers, and on top of the sample containers to achieve and maintain preservation at 4 degrees Celsius from the time of collection until receipt by the laboratory. Sample containers, preservatives, and holding times used for this project are shown in Table 3-1 and Table 3-2.

Every cooler contained a COC form, prepared in triplicate, which identified all of the sample containers, analytical requirements, time and date sampled, preservatives, and other pertinent field data. Samples were shipped by an overnight courier to the ECB Laboratory to enable analysis within the specified holding times. Upon receipt in the laboratory, the Sample Custodian opened the shipping containers, compared the contents with the COC record, ensured that the document control information was accurate and complete, and dated the form. A Sample Receipt Form was also used by the laboratory to log in samples and document their integrity upon arrival. These forms are provided in the Analytical Data Packages.

3.3 FIELD QUALITY CONTROL SAMPLES

Duplicate samples were analyzed at the rate of one for each analytical batch. The results of the field QC samples and their impact on data quality are discussed in Section 4.0.

Parameter	Container'	Preservation	Maximum Holding Times:	
			Extraction	Analysis
Total Metals	1 - 500 ml plastic	HNO3 to pH<2 Ice to 4°C	6 months	6 months
Dissolved Metals	1 - 500 ml plastic	Ice to 4°C*	6 months (Hg-28 days)	6 months (Hg-28 days)
Alkalinity Chloride sulfate	1- 500 ml plastic	Ice to 4°C		14 days 28 days 28 days

Table 3-1 Sample Containers, Preservation, and Holding Times for Groundwater Samples

* Acid preserved after filtration through 0.45 micron filter.

Parameter	Container'	Preservation	Maximum Holding Times:	
			Extraction	Analysis
Total Metals	1 x 8 oz Glass	Ice to 4°C	6 months	6 months

4 EVALUATION OF DATA QUALITY

The laboratory analytical data was reviewed and verified by the ECB Laboratory and then

evaluated by the CENWO project chemist for compliance with project objectives.

The following section is a description of the laboratory review procedures used to ensure data quality and the project chemists' assessment of project deliverables. Data usability was determined by comparing the project DQOs against the quality of the final analytical results.

4.1 LABORATORY QUALITY CONTROL SAMPLES

This section provides a description of laboratory QC samples: laboratory control samples, method blanks, and matrix spike/matrix spike duplicate.

4.1.1 Laboratory Control Samples (LCS)

The laboratory analyzed a spike blank sample in duplicate to evaluate the precision and accuracy within an analytical batch. The nomenclature for these samples is a laboratory control sample (LCS). LCS sample pairs consisted of analyte-free water which was spiked with selected target compounds. LCS results are included in the QC section of each laboratory's data package which are included in the Analytical Data Packages.

4.1.2 Method Blank Analyses

A laboratory method blank is a contaminant free matrix sample (e.g. a method blank is often a volume of distilled water carried through the entire analytical scheme) that is subjected to the same analytical procedures as the field samples. The method blank is used in all analyses to verify that the determined concentrations do not reflect contamination. One method blank is performed with every batch of samples (approximately 20 samples). If consistent high blank values are observed, laboratory glassware and reagents are checked for contamination and the analysis is halted until adequate blank results are obtained.

4.1.3 Surrogate Spike Analyses

An organic surrogate compounds is spiked into all investigative samples for organic analyses. The surrogate is compared to QC limits to evaluate the matrix effect of each sample and monitor the overall system performance. Low surrogate recoveries are indicative of problems in instrument performance, extraction procedures, or severe matrix effects. Samples which have a surrogate recovery above the laboratory control limits typically do not demonstrate performance problems unless the recoveries are high enough to indicate double spiking of surrogate compounds or extremely low internal standard recoveries.

4.1.4 Matris Spike/Matrix Spike Duplicate (MS/MSD)

The laboratory analyzed a spiked environmental sample and duplicate to evaluate the precision and accuracy within an analytical batch. The matrix spike (MS) is used to assess the performance of the method as applied to a particular project matrix. The MS is an environmental sample io which known concentrations of certain target analytes have been added before sample manipulation from the preparation, cleanup, and determinative procedures have been implemented. The results of the MS are evaluated in conjunction with other QC information to determine the effect of the matrix on the bias of the analysis.

4.2 LABORATORY DATA VALIDATION ACTIVITIES

All analytical data generated by ECB Laboratory was checked for completeness and evaluated for overall quality prior to final report generation as outlined in the Quality Assurance Program

Plan (QAPP) and specified in the laboratory's Standard Operating Procedures (SOPs). This process consisted of data generation and reduction plus three levels of documented review. Each step of the review process involved evaluation of data quality based on QC data results and the professional judgement of the reviewer(s). All reviews were documented by the reviewer's signature and the date reviewed.

The first level review was performed by the analyst who generated the raw analytical data. Primary emphasis of the review was on correctness and completeness of the data set. All data were generated and reduced following method-specific SOPs. Each analyst reviewed the quality of the work based on the guidelines established in the SOP. The first review ensured that:

- Sample preparation and analysis information was correct and complete;
- The appropriate SOPs had been followed;
- QC parameters were within method control limits; and
- Documentation was complete

The second level review was structured so that all calibration data and QC sample results were reviewed and 10 percent of the analytical results were confirmed against the bench and instrument sheets. This includes a complete review of instrument data scans to ensure accurate peaks and retention time, and correct peak integrations have been performed. If no problems were found with the data package, the review was considered complete. If any problems were found with the data package, an additional 10 percent of the samples were checked to the bench sheet. The process was continued for each batch until no errors were found or until each data package was reviewed in its entirety. All second level reviews were performed by a laboratory supervisor, data review specialist, or QA officer to ensure that:

- Calibration data were appropriate to the method and completely documented;
- QC samples were within established guidelines;
- Qualitative identification of sample components was correct;
- Quantitative values were calculated correctly;
- Documentation was complete and correct;
- The data were ready for final reporting; and;
- The data package was complete and ready for data archive.

An important element of the second review was the documentation of any errors identified and corrected during the review process.

Before the final report was released, a third review was performed to check each data package for completeness and to ensure that the data met the overall objectives of the project. This review was done by the laboratory Program Administrator, as stated in the QAPP. The review was performed to ensure that:

- Target analyte lists were complete as specified in the sampling and analysis plan;
- Data package checklist items were present;
- Case narratives accurately documented analytical conditions;

• All non-conformances were addressed and closed.

The Analytical Data Packages (ADPs) contain the following:

- Cover page, identifying project and remarks;
- Summary and discussion of method QC and shipping and/or chain-of-custody errors;
- Sample receipt information including copies of Cooler Receipt Forms;
- Chain-of-Custody (COC) information including copies of COCs;
- Analytical Test Results;

As part of the review process, the laboratory applied data qualifiers to specific results to indicate usability and/or special analytical conditions. The following qualifiers were used to flag data:

- B The compound was also observed in the method blank.
- J Estimated concentration below the Reporting Limit.
- u The compound was not detected.
- M Reporting limit higher than normal due to matrix interferences.
- D Derived from a dilution of extract.

All investigative and QC sample summary results have been submitted in the Analytical Data Packages in the form of the Case Narrative.

4.3 PROJECT CHEMIST QUALITY EVALUATION

In addition to the internal validation conducted by the ECB Laboratory, the project chemist performed data validation of the data set. This included an evaluation and validation of samples based on:

- Initial sample inspection and COC documentation;
- Holding Times;
- Field Duplicate Analyses;
- Laboratory Control Samples;
- Method Blank Analyses;
- Matrix Spike/Matrix Spike Duplicate recoveries;
- Surrogate recoveries;
- Precision, accuracy, representativeness, completeness, and comparability (PARCC) parameters as they apply to this CDQAR; and
- An overall assessment of data compared to the project DQOs.

The CENWO project chemist received data from the laboratory in hard copy format. The USACE Guidance for the Review of Performance-Based Definitive Chemical Data was used to perform the review and validation of the data.

The first step in evaluating and validating the data was to group the samples according to analytical batch or work group. A table was generated which show all analytical batches (project samples and laboratory QC samples). The batches are shown on Table 4-1. After analytical

batching, the batches were reviewed to ensure that the proper QC (type and frequency) was analyzed according to the QAPP for each batch. Next, sample duplicate frequency was evaluated for compliance with the QAPP. Chain-of-custody forms and Cooler Receipt Forms were then reviewed. Any problems found were documented and the impact on sample results was determined and explained.

Holding times were evaluated for compliance with extraction and analysis holding time requirements. Matrix spike recoveries were evaluated for all samples. MS/MSD results were re-calculated on at least one sample per batch. Data qualifier flags were applied as appropriate. Surrogate spike recoveries were evaluated for all samples and surrogate recoveries were re-calculated on at least one sample per batch for organic analyses.

Next, LCS results were reviewed for all samples. LCS recoveries were re-calculated on one sample per batch. Relative Percent Differences (RPDs) for MS/MSD and LCS/LCSD pair calculations were verified for all batches. The 5X and 10X rule (as discussed in the Functional Guidelines for the Evaluation of Chemical Data) was used for evaluation of method blank results. The completeness percentage for surrogates, LCS, MS/MSD and holding times was then calculated.

A summary of the data review/validation results are given in Section 5.

As discussed previously, data qualifier flags were applied to out-of-control data as appropriate. The following qualifiers were used to indicate data usability:

- u: The analyte was not detected relative to the method reporting limit.
- UN: The result is reported as a tentative nondetection. There is uncertainty with whether or not the non detection is valid at the stated method reporting limit.
- X: The data is tentatively rejected because project-specific data quality objectives have not been met or have not been demonstrated.
- J: The target analyte is positively identified but the quantitative result is an estimate and the direction of bias is unknown. The flag indicates a significant quantitative (rather than a qualitative) uncertainty exists.
- J-: The target analyte is present but the reported concentration is an estimated value that is believed to be biased low. (i.e. the actual concentration in the environmental sample believed to be higher than the reported concentration)
- J+: The target analyte is present but the reported concentration is an estimated value that is believed to be biased high. (i.e. the actual concentration in the environmental sample is believed to be lower than the reported concentration)
- R: Data is rejected due to the serious deficiencies in the ability to analyze the sample and

meet quality control criteria. The presence or absence of the analyte cannot be verified. The data is not useable.

Field and COC documentation were compared against laboratory reports to check conformity of sample identification numbers. Analytical results were compared to daily activity logs to identify sampling procedures/activities that may have impacted data quality.

Batch	Analyses	Sample ID
WG11586	Metals (soil)	CO-WC-SB01-05
		CO-WC-SB01-03
		CO-WC-SB01-07
		CO-WC-SB01-10
		CO-WC-SB01-15
		CO-WC-SB01-20 dup of -03
		Method Blank
		Laboratory Matrix Duplicate
		Matrix Spike (MS)/Matrix Spike Duplicate (MSD)
		Laboratory Control Sample (LCS)
WG11556	Motola (water leachete)	CO WC SP01.05
wG11550	Metals (water leachate)	
		CO-WC-SB01-03
		CO-WC-SB01-07
		CO-WC-SB01-10
		CO-WC-SB01-15
		CO-WC-SB01-20 dup of -03
		Method Blank
		Laboratory Matrix Duplicate
		MS/MSD
		LCS
M021066	pH (water leachate)	CO-WC-SB01-05
		CO-WC-SB01-03
		CO-WC-SB01-07
		CO-WC-SB01-10
		CO-WC-SB01-15
		CO-WC-SB01-20 dup of -03
		pH (4 standard)
		pH (7 standard)
M021066	Conductivity (water	CO-WC-SB01-05
111021000	leachate)	CO-WC-SB01-03
	icacitate)	CO-WC-SB01-07
		CO-WC-SB01-10
		CO-WC-SB01-15
		CO-WC-SB01-20 dup of -03
		Method Blank
		Laboratory Matrix Duplicate
		LCS

Table 4-1 Analytical Batches Willow Creek

Batch	Analyses	Sample ID
M021066	Acidity (water	CO-WC-SB01-05
	leachate)	CO-WC-SB01-03
		CO-WC-SB01-07
		CO-WC-SB01-10
		CO-WC-SB01-15
		CO-WC-SB01-20 dup of -03
		Method Blank
		MS/MSD
		LCS
WG11706	Motola (groundwater	CO WC MW21 (diag) *
W011700	Metals (groundwater filtered)	CO-WC-MW21 (diss) * CO-WC-MW20 (diss)
	mereu)	CO-WC-MW20 (diss)
		CO-WC-MW18 (diss)
		CO-WC-MW19 (diss) CO-WC-MW17 (diss)
		Method Blank
		Laboratory Matrix Duplicate MS/MSD
		LCS
WG11677	Metals (groundwater	CO-WC-MW21*
	unfiltered)	CO-WC-MW20
		CO-WC-MW16
		CO-WC-MW18
		CO-WC-MW19
		CO-WC-MW17
		Method Blank
		Lab Matrix Dup
		MS/MSD
		LCS
WC11700	S-16-4- (
WG11728	Sulfate (groundwater	CO-WC-MW21*
	unfiltered)	CO-WC-MW20
		CO-WC-MW16
		CO-WC-MW18
		CO-WC-MW19 CO-WC-MW17
		Method Blank
		Lab Matrix Dup
		MS/MSD
		LCS
WG11713	Chloride (groundwater	CO-WC-MW21*
WU11/13	Chioriae (groundwater	

Batch	Analyses	Sample ID
	unfiltered)	CO-WC-MW20
		CO-WC-MW16
		CO-WC-MW18
		CO-WC-MW19
		CO-WC-MW17
		Method Blank
		Lab Matrix Dup
		MS/MSD
		LCS
WG11697	Alkalinity	CO-WC-MW21*
	(groundwater	CO-WC-MW20
	unfiltered)	CO-WC-MW16
		CO-WC-MW18
		CO-WC-MW19
		CO-WC-MW17
		Method Blank
		Lab Matrix Dup
		MS/MSD
		LCS

* duplicate of CO-WC-MW20

5 RESULTS OF QUALITY CONTROL ACTIVITIES AND ANALYSES

Field QC activities consisted of collecting appropriate field QC samples (field duplicates, trip blanks), daily communication between the CENWO field team and the ECB Lab, and consistent interaction between the CENWO field team and CENWO Technical Manager.

5.1 FIELD QC PROCEDURES AND FIELD QC ANALYSES

5.1.1 Documentation of Field Quality Procedures

Daily field notes were completed to summarize daily investigation procedures and document QC activities. These reports summarize samples collected, environmental conditions, instrument problems, and any non-routine situations which may have impacted sample integrity. These reports were reviewed concurrently with the COC forms and the analytical results from the laboratory to identify potential sampling anomalies or confirm sample identifications. These reports show collection procedures were adequate to ensure data results met project objectives.

5.1.2 Field Duplicate Analyses

Field duplicate samples were collected during the sampling event to evaluate sampling and laboratory precision. The duplicate groundwater sample was analyzed for total and dissolved metals and sulfate, alkalinity, and chloride on the unfiltered sample. The duplicate soil samples were analyzed for total metals and the water leachate was analyzed for total metals, pH, acidity, and conductivity.

The analytical data agreed between the field sample and the field duplicate sample were within set criteria. See results in the data tables of Appendix A. See Table 4-1 for the duplicate samples obtained.

5.2 LABORATORY QC PROCEDURES AND LABORATORY QC ANALYSES

A review of laboratory QC procedures was conducted by the USACE project chemist. All issues identified, and their respective solutions are discussed below and required qualifications are discussed and are included in the data tables of Appendix A.

5.2.1 Initial Sample Inspection and COC Documentation

The ECB Laboratory inspected all shipping containers and compared the contents with the appropriate COC documentation. Information from the sample check-in procedures was recorded on the Cooler Receipt Form. This form was used to document that samples listed on the COC forms agreed with samples contained in the coolers, COC forms were filled out properly, samples were not broken, custody seals were intact, and cooler temperatures were less than or equal to 4°C. These forms are included in the Analytical Data Packages. No problems or deficiencies were found with the sample shipments or COC documentation except the date on the soil samples were written as Oct 24, 2002 and on the COC as Oct 23, 2002. No qualification were needed.

5.2.2 Holding Times

Samples were delivered daily by the overnight courier to ECB Laboratory to ensure all analyses were completed within the required holding times. Part of the CENWO chemist evaluation included reviewing sample extraction and analysis dates to ensure holding times were met. Based on CENWO's review of the laboratory data, all samples were extracted and analyzed within the required holding times.

5.2.3 Method Blank Analyses

Method blanks were analyzed to assess existence and magnitude of contamination problems and measure the representativeness of the analytical process. Blanks reflect the amount of contamination introduced into the environmental samples during sample collection, transfer from the site to the laboratory or analysis. In particular, method blanks reflect laboratory contamination from both the determinative and preparatory method. At least one method blank must be reported for each preparation batch of samples. All blanks were clean except in the following:

<u>Analytical Batch: WG11568</u>. This method blanks contained Zinc at 0.6 J mg/kg. All samples had Zinc values of >100 mg.kg so no qualification was applied the samples were greater than 5 time the blank.

5.2.4 Laboratory Control Samples

Laboratory control samples are evaluated to assess overall method performance and are the primary indicators of laboratory performance. Laboratory control samples are method blanks which are typically spiked with all target analytes of interest. The percent recovery is used as a measure of accuracy and bias. The relative percent difference (RPD) for duplicate LCS recoveries is normally used as a measure of precision. When both a laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) are processed for a batch of samples, there is no significant physical distinction between the LCS and the LCSD. Both the LCS and the LCSD must satisfy the same recovery acceptance criteria. At least one LCS must be reported with each batch of samples. Multiple LCSs may be required to evaluate method precision. For example, a laboratory control sample and a laboratory control sample duplicate (LCSD) may be analyzed to provide information on the precision of the analytical method. The generation of control chart limits for precision via the analysis of LCS/LCSD pairs is an effective means to measure method precision. LCS and LCSD results are included in the QC section of the laboratory's data package.

<u>Metals</u>: An LCS was analyzed with each metals analytical batch. The percent recovery was compared to set criteria for each analyte. The LCS percent recoveries were all within set criteria for the soil and water samples, so no qualifications were applied to metals results.

<u>Sulfate</u>: An LCS was analyzed as part of the sulfate quality control to determine precision. The % Recovery results met set criteria so no qualification was applied to the sulfate results.

Alkalinity: An LCS was analyzed as part of the alkalinity quality control to determine

precision. The % Recovery results met set criteria so no qualification was applied to the alkalinity results.

<u>Chloride:</u> An LCS was analyzed as part of the chloride quality control to determine precision. The % Recovery results met set criteria so no qualification was applied to the chloride results.

<u>Conductivity and Acidity of Water Leachate Samples:</u> An LCS was analyzed as part of the conductivity and Acidity quality control to determine precision. The % Recovery results met set criteria so no qualification was applied to the chloride results.

5.2.5 Surrogate Recovery

Surrogates are organic compounds which are similar in chemical composition to the analytes of interest. Surrogates are spiked into environmental and batch QC samples prior to sample preparation and analysis. Surrogate recoveries for environmental samples are used to evaluate matrix interference on a sample-specific basis. High or low surrogate recoveries indicate problems in instrument performance, extraction procedures, or severe matrix effects. Samples for this project were not spiked with surrogate analytes.

5.2.6 MS/MSD Recovery

Matrix Spike (MS) and matrix spike duplicate (MSD) results are examined to evaluate the impact of matrix effects on overall analytical performance. A matrix spike is a representative environmental sample which is spiked with target analytes of interest prior to being taken through the entire analytical process in order to evaluate analytical bias for an actual matrix. A matrix duplicate is a collocated or a homogenized sample which is processed through the entire analytical procedure in order to evaluate overall precision for an actual matrix.

It should be noted that MS recovery failure and poor precision may arise because of (i) poor sampling technique, (ii) inadequate homogenization, or (iii) from matrix effects associated with the preparatory or determinative portion of an analytical method. Matrix interferences may be "positive" or "negative" in nature. Results of MS/MSD analyses are included in the Analytical Data Packages. The percent recovery and RPD for the MS/MSD for the metals, sulfate, alkalinity, and chloride were within criteria so no qualification was applied to the data.

5.2.7 Completeness of Data Packages

The CENWO Chemist reviewed the data package and confirmed the completeness of the data package. All the planned sampling activities were executed and all the laboratory analyses were performed.

5.3 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPLETENESS AND COMPARABILITY (PARCC)

DQOs and their corresponding measurement indicators were specified in the Site Specific Addendum for the Willow Creek, Colorado, 4, October, 2002. To achieve the project

DQOs, specific PARCC goals are established for laboratory and field sampling procedures. These PARCC parameters are the measurement tools for determining the usability of generated data.

Precision and accuracy goals were based on knowledge of each analytical measurement system. For this CDQAR, precision was measured using the RPD between two replicated sample analyses. The precision evaluation encompassed laboratory precision (LCS samples), and combined field/laboratory precision (MS/MSD samples).

Accuracy was measured using the percent recovery of surrogates, MS/MSD samples, and LCS sample pairs. Spike recoveries form field samples and laboratory QC samples are compared to established control limits to determine a laboratory's ability to accurately determine both qualitative and quantitative results.

Representativeness is the degree to which the data accurately and precisely portrayed the environmental conditions being studied. For the site investigation, sampling procedures and sample locations were selected to bias samples in areas of potential places of contamination. All sampling was conducted using known approved field procedures to minimize variability.

Completeness refers to the amount of valid data obtainable from a measurement system compared to the expected amount of data. The SAP established a completeness goal of 90 percent for laboratory QC requirements. This goal was attained by the data for this project.

5.4 Data Tables

The qualified data is given in Table 1, 2, 3, and 4 of Appendix A.

5.5 Analytical Data Package

Data Sheets as obtained from the Environmental Chemistry Laboratory are given as a hard copy of the Analytical Data package.

6 CONCLUSIONS

This CDQAR presents, in specific terms, the quality control practices utilized to achieve the goals of the site investigation at Willow Creek-Creede, Colorado. The analytical program for this project conformed with the General Work Plan for the Restoration of Abandoned Mines Sites prepared by U.S. Army Corps of Engineers, Omaha District, Omaha, Nebraska, July 2002 and the Site Specific Addendum for Willow Creek-Creede, Colorado, 4 October, 2002. Samples were also collected and analyzed in accordance with ASTM and EPA methods and laboratory specific QA/QC procedures were used. These procedures were followed to generate high quality data.

The quality issues addressed in this report do not impact the usability of the data. These issues have all been addressed on Section 5 and the qualified data is given in Appendix A. The reviewed data are usable and are suitable for addressing the overall objective of this investigation.

Appendix A

ECB Project No. 6704

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS ENVIRONMENTAL CHEMISTRY BRANCH OMAHA, NEBRASKA 68102

23 JAN 2003

Subject: Certificate of Analysis

Project: Willow Creek, CO Intended Use: Special Source of Material:

Submitted by: Kim Mulhern, CENWO-ED-GG Date Sampled: 23 Oct - 18 Nov 02 Date Received: 24 Oct - 19 Nov 02 Method of Test or Specification: See attached test result sheets

References: Omaha District Request No. W59XQG23105113 dated 6 Nov 02

-- REMARKS --

- 1. Review comments for project data are presented on the following pages.
- 2. Sample receipt information and analytical data are provided in the following parts of the report.

Part A: Sample Receipt Information (2 page) Part B: Chain-of-Custody Information (6 pages) Part C: Analytical Test Results (94 pages)

3. The Quality Assurance Test Results are attached; if you have an questions please contact Laura Percifield at (402)444-4313.

Submitted by:

DOUGLAS B. TAGGART Chief, Environmental Chemistry Branch

Percifield/glr

AN TALE OF A CARGE STORE ST

ECB Project No. 6704 Page 2 of 3

TEST RESULTS

1. SUMMARY

ECB compiled the data package according to the USACE HTRW minimum chemistry reporting requirements. ECB and Continental Analytical Services, Inc. (CAS) performed the analyses using EPA methods. Proper quality control procedures were followed and documented. The method quality control results outlined below support the usability of the data.

2. DISCUSSION

- a. Six soil and six water samples were received by ECB between 24 Oct 02 to 19 Nov 02. The samples were analyzed for one or more of the following:
 - * Metals by EPA method 6010 for aluminum, cadmium, calcium, copper, iron, lead, magnesium, manganese, and zinc.
 - * TCLP metals by the EPA methods listed above along with the TCLP extraction method of 1311.
 - * Alkalinity (Alk) by EPA method 310.2.
 - * Chloride (Cl) by EPA method 325.2.
 - * Sulfate (SO4) by EPA method 375.2.
 - * pH by EPA method 150.1.
 - * Conductivity (Cond) by EPA method 120.1.
 - * Acidity by EPA method

The 100 and 300 series methods are from EPA 600/4-79-020 (1983 "Methods for Chemical Analysis of Water and Wastes." All othe methods are from SW-846 (1986), "Test Methods for Evaluation (Solid Waste."

Part "A" of this report lists all of the samples received.

- b. The following shipping and chain-of-custody errors were note for the sample shipments received by ECB.
 - 1) The times sampled on the sample containers were not the as those on the custody paper that was received on 24 Oct 02.
 - 2) The samples for dissolved metals analysis were filtered preserved at ECB.

Part "B" of this report contains the chain-of-custody information.

c. The samples were analyzed by ECB and CAS.

Part "C" of this report lists the analytical test resul

ىرى بىيورىمۇ بويۇمىيور يەنىر بارات بەرىپ دارايە بىيەت بورىيەت

3. METHOD QUALITY CONTROL

- a. Metals:
 - 1) The method blanks were free of contamination except for an estimated concentration of zinc (page C7).
 - Laboratory duplicate results matched the results from the original field samples except for aluminum whose relative percent difference (RPD) was above acceptable limits (page C38).
 - 3) Matrix spike/matrix spike duplicate (MS/MSD) recoveries were within acceptable limits except for calcium whose recoveries were outside acceptable limits (page C9). Relative percent differences (RPD) for MS/MSD recoveries were within acceptable limits.
 - 4) Laboratory control sample (LCS) recoveries were within acceptable limits.
 - 5) Holding times were met.
- b. WQ parameters:
 - 1) The method blanks were free of contamination.
 - 2) Laboratory duplicate results matched the results from the original field samples.
 - 3) The MS/MSD recoveries were within acceptable limits. RPD for MS/MSD recoveries were within acceptable limits.
 - 4) LCS recoveries were within acceptable limits.
 - 5) Holding times were met.

法保持的法律法 医无关的 化化合物

PART A

SAMPLE RECEIPT INFORMATION

Sample	Customer	Date		ECB #	Tests	Test Result:
umber	Sample ID	Sampled	Matrix	Assigned	Assigned	Page Numbe
						*
001	CO-WC-SB01-05	23 Oct 02	Soil	M021066-001	Metals	Cl
001	CO NC 5261 05	25 000 02	3011	M021066-002		C11
				M021066-002 M021066-002		C77
						C71
				M021066-002 M021066-002	-	C86
				M021068-002	Actuity	600
002	CO-WC-SB01-3	23 Oct 02	Soil	M021066-003	Metals	C2
				M021066-004	Metals	C12
				M021066~004	Cond	C78
				M021066-004	рН	C72
				M021066-004	Acidity	C87
003	CO-WC-SB01-7	23 Oct 02	Soil	M021066-005	Motala	C3
005	CO-#C-3B01-7	23 000 02	3011	M021066-006		C13
				M021066-006		C13
						C73
				M021066-006	-	C88
				M021066-006	Acidity	600
004	CO-WC-SB01-10	23 Oct 02	Soil	M021066-007	Metals	C4
				M021066-008	Metals	C14
				M021066-008	Cond	C80
				M021066-008	рН	C74
				M021066-008	Acidity	C89
			a = + 1	M001066 000	Mat - 1 -	25
005	CO-WC-SB01-15	23 Oct 02	Soil	M021066-009		C5 C15
				M021066-010		
				M021066-010		C81 C75
				M021066-010	-	C90
				M021066-010	Actatty	(30
006	CO-WC-SB01-20	23 Oct 02	Soil	M021066-011	Metals	Ce
				M021066-012	Metals	C16
				M021066-012	Cond	C82
				M021066-012	pH	C76
				M021066-012	Acidity	C91
	ao 110 1977 5	17 No. 00	Manage		31-	C66
007	CO-WC-MW17	17 Nov 02	Water	M021175-012		
				M021175-012		C56
	-			M021175-012		C46
				M021175-011		C26
				M021175-012	metals	C36
008	CO-WC-MW18	17 Nov 02	Water	M021175-008	Metals	C34
				M021175-008	Alk	C64
				M021175-008	Cl	C54
				M021175-008	S04	C44
				M021175-007	Metals	C24
		17		N001175 010	11	C35
009	CO-WC~MW19	17 Nov 02	Water	M021175-010		C65
				M021175-010		C65
				M021175-010		C45
				M021175-010 M021175-009		C45
				M0211/J-009	Metars	625
010	CO-WC-MW20	18 Nov 02	Water	M021175-003	Metals	C32
				M021175-003	Alk	C62
				M021175-003	cl Cl	C52
				M021175-003	S04	C42
				M021175-004	Metals	C22
			.		M	<i></i>
011	CO-WC-MW21	18 Nov 02	Water	M021175-002		C31
				M021175-002		C61
				M021175-002		C51
				M021175-002 M021175-001		C41 C21

المتعاقي أنسبي وتهدينا الالتلاط التهين

.

Company and contract of set for the set of the set of

AZ

Sample	Customer	Date		ECB #	Tests	Test Results
Number	Sample ID	Sampled	Matrix	Assigned	Assigned	Page Number
012	CO-WC-MW16	18 Nov 02	Water	M021175-006	Metals	C33
				M021175-006	Alk	C63
				M021175-006	Cl	C53
				M021175-006	S04	C43
				M021175-005	Metals	C23

化温姆特别 化氟化化 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化

PART B

CHAIN-OF-CUSTODY INFORMATION

 Page No.	Chain-of-Custody No	Date Signed	
B1	10083	23 Oct 02	
B3	3864	18 Dec 02	
B5	4948	18 Dec 02	

Stand Barah

PROJ. NO. PROJECT NAME LTMS 6704 VILLOD Creek (RAMS SAMPLARS: (Signature) STA. NO. DATE TIME & STATION LOCATIC STA. NO. DATE TIME & Station LOCATIC SCOT 102362 BBID V CO-WC-SB01-05 SB01 102362 BBID V CO-WC-SB01-15 SB01 102362 BBIS V CO-WC-SB01-15 SB01 102362 V CO-WC-SB01-15 SB01 102360 - 5001-7 SB01 - 102360 - 5001-7001-7 SB01 - 102360 - 5001-7 SB01 - 102360 - 5001-7 SB01 - 102360 - 5001-7

- ---

U.S. ARMY CORPS OF ENGINEERS

	Ba
COOLER RECEIPT FORM Chemistry Quality Assurance Branch Laboratory	
S#(0.04) COAB Cooler # Number of Coolers Contractor Cooler Project: DUUDU UUUU Date received: 10004102	
USE OTHER SIDE OF THIS FORM TO NOTE DETAILS CONCERNING CHECK-IN PROBLEMS.	·
A. PRELIMINARY EXAMINATION PHASE: Date cooler opened: 1024/02 C-of-C Number: 1008 by (print) Delly Wink (sign) Alley Stump	3
1. Did cooler come with a shipping slip (air bill, etc.)?	NO
2. Were custody seals on outside of cooler?	NO
3. Were custody seals unbroken and intact at the date and time of arrival?	NO
4. Did you screen samples for radioactivity using the Geiger Counter?	NO
5. Were custody papers sealed in a plastic bag & taped inside to the lid?	.NO
6. Were custody papers filled out in the appropriate place?	NO
7. Did you sign custody papers in the appropriate place?	NO
8_ Was project identifiable from custody papers?	NO
9. Type of ice: <u>19</u> Temperature: <u>4,5</u> Date temperature measured: <u>10</u>	102
10. Describe type of packing in cooler:	
11. Were all bottles sealed in separate plastic bags?	NO
B. LOG-INPHASE: Date samples were logged-in: 10 24 02 by (print)	
12. Did all bottles arrive unbroken & were labels in good condition?	NO
13. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)?) NO
14. Did all bottle labels agree with custody papers? 0825 fine on pamples YES	r (NÔ)
15. Were correct containers used for the tests indicated? 7, 10, 15, 20	S NO
16. Were correct preservatives added to samples?	S) NO
17. Was a sufficient amount of sample sent for tests indicated?	S) NO
18. Was headspace absent in volatile samples? If NO, list by QA#:	SNO
19. Were the custody papers checked against the sample receipt form? By whom? Date: 1	olcilor

					۰.	· .		r Field File	bordinato	nt; Copy to C	ies Shipme	Distribution: Original Accompanies Shipment; Copy to Coordinator Field File-	on: Origi	stributi	D			-
				0	1000	19/02	1	id	al -	Viealle								
			Remarks	R	Time	Date / T	D	bү:	boratory	Received for Laboratory by: (Signature)	Rece (Sign	Date / Time		ire)	(Signatu	hed by:	Relinquished by: (Signature)	<u></u>
Received by: <i>(Signature)</i>	Time	Date /		gņatur	Relinquished by: (Signeture)	uished	Relinqu		lgnature)	Received by: <i>(Signature)</i>	Rece	Date / Time		ure)	(Signate	hed by:	Rellinquished by: (Signeture)	ות
											×	62 15oc	N/IT		Jon	Janlins	K-G	5
Received by: (Signature)	' Time	Date /	e)	gnatur	Relinquished by: (Signature)	uished	Relinqu		ignature)	Received by: (Signature)	Rece	Date / Time	_	ure)	(Signatu	hed by:	Relinquished by: (Signature)	
											MUNI	(0 - MC	X		<u><u></u> <u> </u> <u> </u></u>	1/1/02		
(marrie upon Vice p) TC	lus	- UN my	=]_			<		-		4	Imm/	o-wc-	_F_		- 1 ¹ .	11/102		
	0	17NU3 4C									MW	(6 - wc - MW)	_			W/17/02		T
		ſ		1		×		+			Mulli	Co-WC-MUNC			1.5.1	WI-The		1
presence upon incent, 4°C	1	Tilter and	17			<u> </u>	X				1 min	CO-WC-LMWA	16		11-151	11/17/22 154		T
nan - Angelan an Angela		the take	1 7				×				(w 1)	Co-WC- MWIN	XIC		1541	W/17/2		Γ
					19.00		X	AINERS		ATION	STATION LOCATION	STAT	GRAB	COMP.	TIME	DATE	STA. NO.	ST
REMARKS				· ~ *			>	CON-					È.	la	Trac	G	K	T
				N.A		Xe		٩ 					-		nature)	S: (Sign	SAMPLERS: Signature,	Ś
						e		NO.	e d	on Cue	- W.11	RAMS - Willow (5	DIECT NAME			PROJ. NO.	5
			R		DRD	RECO	ODY 1	CHAIN OF CUSTODY RECORD	HAIN	0							~~	B
												ERS	ENGINE	SOFE	U.S. ARMY CORPS OF ENGINEERS	. ARM		1

1985

____,

	BU
COOLER RECEIPT FORM Chemistry Quality Assurance Branch Laboratory	
L # 6704 CQAB Cooler # Number of Coolers 1 of 2 Contractor Cooler Project:	
USE OTHER SIDE OF THIS FORM TO NOTE DETAILS CONCERNING CHECK-IN PROBLEMS.	
A. PRELIMINARY EXAMINATION PHASE: Date cooler opened: 11/19/02 C-of-C Number: 386 by (print) - Laura Percifield (sign) Rausa Percifield	04
1. Did cooler come with a shipping slip (air bill, etc.)?	NO
If YES, enter carrier name & air bill number here: \underline{FEDX}	
2. Were custody seals on outside of cooler?	NO
How many & where: 1 link 15ide seal date: 11/18/02 seal name: Rick Gu	<u>ra bow</u> ski
3. Were custody seals unbroken and intact at the date and time of arrival?	NO
4. Did you screen samples for radioactivity using the Geiger Counter?	NO
5. Were custody papers sealed in a plastic bag & taped inside to the lid?	.NO
6. Were custody papers filled out in the appropriate place?	NO
7. Did you sign custody papers in the appropriate place?	NO
8 Was project identifiable from custody papers?	NO
9. Type of ice: Ilquilal Temperature: Z.Y°C Date temperature measured: 11/1	9/02
10. Describe type of packing in cooler: NONE	
11. Were all bottles sealed in separate plastic bags?) NO
B. LOG-IN-PHASE: Date samples were logged-in:	R.
12. Did all bottles arrive unbroken & were labels in good condition?	, NO
13. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)?) NO
14. Did all bottle labels agree with custody papers?	NO NO
15. Were correct containers used for the tests indicated?	ои (
16. Were correct preservatives added to samples? and metal futured I (YE	s) NO
17. Was a sufficient amount of sample sent for tests indicated?	s) NO
13. Was headspace absent in volatile samples? If NO, list by QA#:	S NO
19. Were the custody papers checked against the sample receipt form? By whom?	1/25/02

		dinator Field Filr	Distribution: Original Accompanies Shipment; Copy to Coordinator Field Fire
	Date / Time Remerks $11/(2/a^2)/0.00$	atory by:	Relinquished by: (Signature) Date / Time Received for Laboratory by
Date / Time Received by: <i>(Signature)</i>	Relinquished by: <i>(Signature)</i>	ature)	Herinquished by: (Signature) Date / Time Received by: (Signature)
Date / Time Received by: <i>(Signature)</i>		ature)	2 12/17/02/1500
4%	X 4		11/102 144 C × CO - MC - MM/2
filter and preserve upon receipt, 4°C			1442 × co-wc-1
44			1442 X Co-wc
	X	(11/18/22 1072 X CO-WC-MW16
1 1 4	X		N/R/02 1622 X Cartuc - mult
V∂3 4°C			1022 X Co-WC-
	×		Mighor ORD X CO-WC-VMW20
the and preserve upon receipt, be	X		
Hw3, 42	H X		X
	4 X		X
₹ 	× 7		7
HN03.48		-	"/18/02 MID X CO-WC-MINZI
		TAINERS	STA. NO. DATE TIME P AB STATION LOCATION
REMARKS		CON-	N. JANUAL
	KA KA	OF	SAMPLERS: (Signature)
		NO,	Lims (: Toy Colora do RiAWS- Willow Creek
7 7 7	11/2		PROJ. NO. PROJECT NAME
		CHAIN OF CUSTODY REC	CH
			U.S. ARMY CORPS OF ENGINEERS

NUNS

÷

-÷ر

COOLER RECEIPT FORM Chemistry Quality Assurance Branch Laboratory	BO
LIM # 6704 CQAB Cooler # Number of Coolers Zof 2 Contractor Cooler Project:	
USE OTHER SIDE OF THIS FORM TO NOTE DETAILS CONCERNING CHECK-IN PROBLEMS. A. PRELIMINARY EXAMINATION PHASE: Date cooler opened: <u>11/19/02</u> C-of-C Number: <u>49</u> by (print) <u>- Laura Percifield</u> (sign) <u>Causa Percifield</u> 1. Did cooler come with a shipping slip (air bill, etc.)?	48 NO
If YES, enter carrier name & air bill number here: <u>FEDX</u> 2. Were custody seals on outside of cooler? How many & where: <u>Iffurt</u> <u>1510</u> seal date: <u>11/18/02</u> seal name: <u>Rick (</u>	NO Brabewski
 3. Were custody seals unbroken and intact at the date and time of arrival? 4. Did you screen samples for radioactivity using the Geiger Counter? 5. Were custody papers sealed in a plastic bag & taped inside to the lid? 	ол (ол ол. то
 6. Were custody papers filled out in the appropriate place? 7. Did you sign custody papers in the appropriate place? 8. Was project identifiable from custody papers? 	NO NO NO
5 Type of ice: <u>llqulat</u> Temperature: <u>2.8°C</u> Date temperature measured: <u>11</u> 10. Describe type of packing in cooler: <u>NONE</u> 11. Were all bottles sealed in separate plastic bags?	<u>19/02</u>
B. LOG-IN-PHASE: Date samples were logged-in:	JU S NO
 13. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? 14. Did all bottle labels agree with custody papers? 	NO NO
	ES NO ES NO
 18. Was headspace absent in volatile samples? If NO, list by QA#:	/ESNO-

 \cap

PART C

ANALYTICAL TEST RESULTS

 and the second second

Total Metals

Project Name:	Willow Creek		Matrix: Soil	
Project Number:	6704	Date Sampled: 10/23/02	Units: mg/kg	
Client Sample ID:	CO-WC-SB01-05	Date Received: 10/24/02	<pre>% Solids: 86.2</pre>	
Sample ID:	M021066-001	Date Reported: 11/13/02		
		Sample Sample		

CAS Number	Analyte	Dilution	Result	Quant Limit	Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	3630	18.	б.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-43-9	Cadmium	1	2.0	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-70-2	Calcium	1	911.	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-50-8	Copper	1	123.	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-89-6	Iron	1	14100	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-92-1	Lead	4	3170	8.0	2.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	1	917.	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-96-5	Manganese	1	210.	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-66-6	Zinc	1	517. B	2.0	0.6	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

B: Analyte also present in the method blank.

	Quality Assurance / Qual	lity Control	
······································	ICP LCS ID: WG11568-	-2 ICP MS ID: WG11568-4	
	GFAA LCS ID: NA	GFAA MS ID: NA	
ICP Method Blank ID: WG11568-1	CVAA LCS ID: NA	CVAA MS ID: NA	
FAA Method Blank ID: NA			
WAA Method Blank ID: NA	ICP LD ID: WG11568-	-3 ICP MSD ID: WG11568-5	
	GFAA LD ID: NA	GFAA MSD ID: NA	
	CVAA LD ID: NA	CVAA MSD ID: NA	

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:Willow CreekMatrix: SoilProject Number:6704Date Sampled: 10/23/02Units: mg/kgClient Sample ID:CO-WC-SB01-3Date Received: 10/24/02% Solids: 93.9Sample ID:M021066-003Date Reported: 11/13/02	
--	--

CAS Number	Analyte		Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	· · · · ·	1	635.	18.	6.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-43-9	Cadmium		1	9.49	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-70-2	Calcium		1	190	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-50-8	Copper		1	78.1	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-89-6	Iron		1	6490	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-92-1	Lead		1	3460	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium		1	20 J	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-96-5	Manganese		1	9.77	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-66-6	Zinc		1	1620 B	2.0	0.6	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

J: Estimated concentration below laboratory reporting limit.

B: Analyte also present in the method blank.

	Quality Assurance	ce / Quality Contro	1
	ICP LCS ID:	WG11568-2	ICP MS ID: WG11568-4
	GFAA LCS ID:	NA	GFAA MS ID: NA
ICP Method Blank ID: WG11568-1	CVAA LCS ID:	NA	CVAA MS ID: NA
GFAA Method Blank ID: NA			
CVAA Method Blank ID: NA	ICP LD ID:	WG11568-3	ICP MSD ID: WG11568-5
	GFAA LD ID:	NA	GFAA MSD ID: NA
	CVAA LD ID:	NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Number: Client Sample ID: Sample ID:	6704 CO-WC-SB01-7 M021066-005	Dat	te Sampled: te Received: te Reported:	10/24/0	2		s: mg/kg olids: 81			
CAS Number Anal	yte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst

7429-90-5	Aluminum	1	1220	18.	6.	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7440-43-9	Cadmium	1	4.0	0.50	0.1	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7440-70-2	Calcium	1	230	60.	20	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7440-50-8	Copper	1	33.8	2.0	0.4	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7439-89-6	Iron	1	15300	24.	8.	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7439-92-1	Lead	6	6260	12.	2.	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	1	37.	24.	8.	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7439-96-5	Manganese	1	10.3	0.80	0.2	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon
7440-66-6	Zinc	1	622. B	2.0	0.6	EPA 6010B	WG11568 11-06-02	11-07-02	Shannon

B: Analyte also present in the method blank.

	Quality Assurance / Quality Con	trol
	ICP LCS ID: WG11568-2	ICP MS ID: WG11568-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11568-1	CVAA LCS ID: NA	CVAA MS ID: NA
GFAA Method Blank ID: NA		
IVAA Method Blank ID: NA	ICP LD ID: WG11568-3	ICP MSD ID: WG11568-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name: Will	low Creek			Matrix: Soil	
Project Number: 670	4	Date Sampled:	10/23/02	Units: mg/kg	
Client Sample ID: CO-W	WC-SB01-10	Date Received:	10/24/02	% Solids: 86.4	
Sample ID: M023	1066-007	Date Reported:	11/13/02		
			Sample Sample	2	

CAS Number	Analyte	Dilution	Result	Quant Limit	Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	1100	18.	б.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-43-9	Cadmium	1	13.4	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-70-2	Calcium	1	570	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-50-8	Copper	1	157.	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-89-6	Iron	1	16400	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-92-1	Lead	4	4190	8.0	2.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	1	38.	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-96-5	Manganese	1	11.0	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-66-6	Zinc	4	2960 B	8.0	2.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

B: Analyte also present in the method blank.

	Quality Assurance / Quality Cont	rol
	ICP LCS ID: WG11568-2	ICP MS ID: WG11568-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11568-1	CVAA LCS ID: NA	CVAA MS ID: NA
JFAA Method Blank ID: NA		
IVAA Method Blank ID: NA	ICP LD ID: WG11568-3	ICP MSD ID: WG11568-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix: Soil	
Project Number:	6704	Date Sampled: 10/23/02	Units: mg/kg	
Client Sample ID:	CO-WC-SB01-15	Date Received: 10/24/02	<pre>% Solids: 75.7</pre>	
Sample ID:	M021066-009	Date Reported: 11/13/02		

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	11000	18.	6.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-43-9	Cadmium	2	2560	1.0	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-70-2	Calcium	1	1430	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-50-8	Copper	1	18.	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-89-6	Iron	1	10500	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-92-1	Lead	1	314.	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	1	2570	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-96-5	Manganese	1	247.	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-66-6	Zinc	2	3920 B	4.0	1.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

B: Analyte also present in the method blank.

	Quality Assurance	ce / Quality Contro	L	···· · · · · · · · · · · · · · · · · ·
	ICP LCS ID:	WG11568-2	ICP MS ID:	WG11568-4
	GFAA LCS ID:	NA	GFAA MS ID:	NA
ICP Method Blank ID: WG11568-1	CVAA LCS ID:	NA	CVAA MS ID:	NA
GFAA Method Blank ID: NA				
CVAA Method Blank ID: NA	ICP LD ID:	WG11568-3	ICP MSD ID:	WG11568-5
	GFAA LD ID:	NA	GFAA MSD ID:	NA
	CVAA LD ID:	NA	CVAA MSD ID:	NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix: Soil
Project Number:	6704	Date Sampled: 10/23/02	Units: mg/kg
Client Sample ID:	CO-WC-SB01-20	Date Received: 10/24/02	<pre>% Solids: 93.9</pre>
Sample ID:	M021066-011	Date Reported: 11/13/02	

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	614.	18.	6.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-43-9	Cadmium	1	11.0	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-70-2	Calcium	1	72.	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-50-8	Copper	1	86.8	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-89-6	Iron	1	7430	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-92-1	Lead	4	3690	8.0	2.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	1	20 J	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-96-5	Manganese	1	9.47	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-66-6	Zinc	4	1860 B	8.0	2.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

J: Estimated concentration below laboratory reporting limit.

B: Analyte also present in the method blank.

Quality Assurance / Quality Control										
	ICP LCS ID:	WG11568-2	ICP MS ID: WG11568-4							
	GFAA LCS ID:	NA	GFAA MS ID: NA							
ICP Method Blank ID: WG11568-1	CVAA LCS ID:	NA	CVAA MS ID: NA							
GFAA Method Blank ID: NA										
CVAA Method Blank ID: NA	ICP LD ID:	WG11568-3	ICP MSD ID: WG11568-5							
	GFAA LD ID:	NA	GFAA MSD ID: NA							
	CVAA LD ID:	NA	CVAA MSD ID: NA							

420 South 18th Street Omaha, NE 68102

Method Blank

Method	Blank	ICP	Sample	ID:	WG11568-1
Method	Blank	GFAA	Sample	ID:	
Method	Blank	CVAA	Sample	ID:	

Matrix:	Soil
Units:	ma/ka

CAS Number	Analyte	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date. Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	u	18.	б.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-43-9	Cadmium	u	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-70-2	Calcium	u	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-50-8	Copper	u	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-89-6	Iron	u	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-92-1	Lead	u	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	u	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7439-96-5	Manganese	u	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
7440-66-6	Zinc	0.6 J	2.0	0.6	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

J: Estimated concentration below laboratory reporting limit

Laboratory Matrix Duplicate

	Duplicate			ID:	WG11568-3
Matrix	Duplicate	GFAA	Sample	ID:	
Matrix	Duplicate	CVAA	Sample	ID:	

Matrix: Soil Units: mg/kg

lAS Jumber	Analyte	Sample Result	Dup Result	RPD	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
429-90-5	Aluminum	9810	9810	0	18.	б.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
440-43-9	Cadmium	0.52	0.4 J	17	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
440-70-2	Calcium	3000	2380	23	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
440-50-8	Copper	22.8	23.2	2	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
439-89-6	Iron	26900	28500	6	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
439-92-1	Lead	54.4	55.5	2	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
439-95-4	Magnesium	2290	2270	1	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
439-96-5	Manganese	693.	650.	6	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon
440-66-6	Zinc	76.4 B	78.6 B	3	2.0	0.6	EPA 6010B	WG11568	11-06-02	11-07-02	Shannon

J: Estimated concentration below laboratory reporting limit B: Analyte also present in the method blank.

Matrix Spike, Matrix Spike Duplicate

MS GFAA S	Sample ID: Sample ID: Sample ID:	WG11568-4	11568-4 MSD ICP Sample ID: WG11568-5 MSD GFAA Sample ID: MSD CVAA Sample ID:						Matrix: Units:			
CAS Number	Analyte	Sample Result	MS Conc	Spike Added	*Rec MS	MSD Conc	*Rec MSD	RPD	Method	Date Digested	Date Analyzed	Analyst
7429-90-5	5 Aluminum	9810	12500	600.	NC(1)	12800	NC(1)	NC	EPA 6010B	11-06-02	11-07-02	Shannon
7440-43-9) Cadmium	0.52	47.8	50.0	94	47.6	94	0	EPA 6010B	11-06-02	11-07-02	Shannon
7440-70-2	Calcium	3000	3980	1500	65 *	374.0	49 *	6	EPA 6010B	11-06-02	11-07-02	Shannon
7440-50-8	Copper	22.8	122.	100.	99	122.	99	0	EPA 6010B	11-06-02	11-07-02	Shannon
7439-89-6	Iron	26900	27900	600.	NC(1)	30500	NC(1)	NC	EPA 6010B	11-06-02	11-07-02	Shannon
7439-92-1	Lead	54.4	148.	100.	94	148.	93	1	EPA 6010B	11-06-02	11-07-02	Shannon
7439-95-4	Magnesium	2290	3870	1500	105	3870	106	0	EPA 6010B	11-06-02	11-07-02	Shannon
7439-96-5	Manganese	693.	767.	100.	74 &*	758.	65 &*	1	EPA 6010B	11-06-02	11-07-02	Shannon
7440-66-6	Zinc	76.4 B	180.	100.	103	180.	103	0	EPA 6010B	11-06-02	11-07-02	Shannon

*Rec: Percent of the spike recovered from the matrix

*: Indicates the value is outside control limits (80-120) for %Rec.

&: = High original analyte concentration may prevent accurate determination of the spike recovery.

B: Analyte also present in method blank

NC(1): Not calculated; original analyte concentration too large to accurately determine recovery.

FAX: (402) 341-5448 PHONE: (402) 444-4300

Laboratory Control Sample

LCS GFAA	Sample ID: Sample ID: Sample ID:	WG11568-2									Matrix: S Units: m	
CAS Number	Analyte		LCS Result	True Value	*Rec	Sample Quant Limit	Sample Det Limit	Method	Batch ID	. Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum		601.	600.	100	18.	6.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7440-43-9	Cadmium		51.3	50.0	103	0.50	0.1	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7440-70-2	Calcium		1490	1500	99	60.	20	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7440-50-8	Copper		101.	100.	101	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7439-89-6	Iron		607.	600.	101	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7439-92-1	Lead		101.	100.	101	2.0	0.4	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7439-95-4	Magnesium		1480	1500	99	24.	8.	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7439-96-5	Manganese		102.	100.	102	0.80	0.2	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor
7440-66-6	Zinc		108.	100.	108	2.0	0.6	EPA 6010B	WG11568	11-06-02	11-07-02	Shannor

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name: Willow Creek		Matrix:	Water
Project Number: 6704	Date Sampled: 10/23/02	Units:	ug/L
Client Sample ID: CO-WC-SB01-05	Date Received: 10/24/02		
Sample ID: M021066-002	Date Reported: 11/06/02		

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	2050	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	1	3.4	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	Calcium	1	4930	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	1	57.	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	Iron	1	3800	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	Lead	1	1540	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	1	440	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	Manganese	1	260.	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	Zinc	1	499.	10.	3.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

	-	-	

	Quality Assurance / Quality Contro	ol
	ICP LCS ID: WG11556-2	ICP MS ID: WG11556-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11556-1	CVAA LCS ID: NA	CVAA MS ID: NA
GFAA Method Blank ID: NA CVAA Method Blank ID: NA	ICP LD ID: WG11556-3	ICP MSD ID: WG11556-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name: Wi	llow Creek		Matrix:	Water	
Project Number: 67	704	Date Sampled: 10/23/0	2 Units:	ug/L	
Client Sample ID: CO	-WC-SB01-3	Date Received: 10/24/	02		
Sample ID: MO	21066-004	Date Reported: 11/06/	02		
		Sample	Sample		

CAS Number	Analyte	Dilution	Result	Quant Limit	Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1.	490	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	1	21.	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	Calcium	1	13900	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	1	33.	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	Iron	1	170	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	Lead	1	4660	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	1	100 J	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	Manganese	1	79.3	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	Zinc	1	3910	10.	3.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

J: Estimated concentration below laboratory reporting limit.

	Quality Assurance / Quality Control	
	ICP LCS ID: WG11556-2	ICP MS ID: WG11556-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11556-1	CVAA LCS ID: NA	CVAA MS ID: NA
GFAA Method Blank ID: NA		
CVAA Method Blank ID: NA	ICP LD ID: WG11556-3	ICP MSD ID: WG11556-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name: Project Number: Client Sample ID Sample ID:	Willow Creek 6704 : CO-WC-SB01-7 M021066-006	D	ate Sampled: ate Received: ate Reported:	10/24/02		Matrix: Units:				
CAS Number Ana	lvte	Dilution	Regult	Quant	Sample Det	Method	Batch	Date	Date	

Number	Analyce	Dilucion	Result	Limit	Limit	Method	ID	Digested	Analyzed	Analyst
7429-90-5	Aluminum	1	4720	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	1	129.	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	Calcium	1	36800	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	1	1780	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	Iron	1	78800	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	Lead	1	3230	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	1	590	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	Manganese	1	324.	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	Zinc	10	21700	100	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

Quality Assurance / Quality Control								
	ICP LCS ID: WG11556-2	ICP MS ID: WG11556-4						
	GFAA LCS ID: NA	GFAA MS ID: NA						
ICP Method Blank ID: WG11556-1	CVAA LCS ID: NA	CVAA MS ID: NA						
GFAA Method Blank ID: NA								
CVAA Method Blank ID: NA	ICP LD ID: WG11556-3	ICP MSD ID: WG11556-5						
	GFAA LD ID: NA	GFAA MSD ID: NA						
	CVAA LD ID: NA	CVAA MSD ID: NA						

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name: Project Number: Client Sample ID: Sample ID:	: CO-WC-SB01-10 D	Da	ate Sampled: 10/23/02 ate Received: 10/24/02 ate Reported: 11/06/02			Matrix Units:	Water ug/L			
CAS Number Anal	yte	Dilution	Result		Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst

429-90-5	Aluminum	1	5000	90.	30	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
440-43-9	Cadmium	1	434.	2.5	0.5	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
440-70-2	Calcium	1	78000	300	100	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
440-50-8	Copper	1	4190	10.	2.	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
7439-89-6	Iron	1	25500	120	40	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
439-92-1	Lead	1	3020	10.	2.	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	1	950	120	40	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
7439-96-5	Manganese	1	941.	4.0	1.	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon
7440-66-6	Zinc	10	19500	100	30	EPA 6010B	WG11556 11-04-02	11-05-02	Shannon

Quality Assurance / Quality Contro	1
ICP LCS ID: WG11556-2	ICP MS ID: WG11556-4
GFAA LCS ID: NA	GFAA MS ID: NA
CVAA LCS ID: NA	CVAA MS ID: NA
ICP LD ID: WG11556-3	ICP MSD ID: WG11556-5
GFAA LD ID: NA	GFAA MSD ID: NA
CVAA LD ID: NA	CVAA MSD ID: NA
	ICP LCS ID: WG11556-2 GFAA LCS ID: NA CVAA LCS ID: NA ICP LD ID: WG11556-3 GFAA LD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Number: Client Sample ID:		ם ם ם	Matrix: Units:			 	 			
CAS	<u>,</u>	2 /1/		Sample Quant	Sample Det		Batch	Date	 Date	

Number	Analyte	Dilution	Result	Limit	Limit	Method	ID	Digested	Analyzed	Analyst
7429-90-5	Aluminum	1	94700	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	10	3650	25.	5.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	Calcium	l	36200	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	1	11.	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	Iron	1	157000	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	Lead	1	748.	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	1	31900	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	Manganese	10	21900	40.	10	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	Zinc	10	96200	100	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

Quality Assurance / Quality Control											
ICP LCS ID: WG11556-2	ICP MS ID: WG11556-4										
GFAA LCS ID: NA	GFAA MS ID: NA										
CVAA LCS ID: NA	CVAA MS ID: NA										
ICP LD ID: WG11556-3	ICP MSD ID: WG11556-5										
GFAA LD ID: NA	GFAA MSD ID: NA										
CVAA LD ID: NA	CVAA MSD ID: NA										
	ICP LCS ID: WG11556-2 GFAA LCS ID: NA CVAA LCS ID: NA ICP LD ID: WG11556-3 GFAA LD ID: NA										

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix: Water
Project Number:	6704	Date Sampled: 10/23/02	Units: ug/L
Client Sample ID:	CO-WC-SB01-20	Date Received: 10/24/02	
Sample ID:	M021066-012	Date Reported: 11/06/02	

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	540	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	1	23.	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05 - 02	Shannon
7440-70-2	Calcium	1	9260	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	1	29.	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	Iron	1	150	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	Lead	1	3700	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	1	100 J	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	Manganese	1	51.1	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	Zinc	1	4400	10.	3.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

J: Estimated concentration below laboratory reporting limit.

Quality Assurance / Quality Control											
	ICP LCS ID: WG11556-2	ICP MS ID: WG11556-4									
	GFAA LCS ID: NA	GFAA MS ID: NA									
ICP Method Blank ID: WG11556-1	CVAA LCS ID: NA	CVAA MS ID: NA									
GFAA Method Blank ID: NA											
CVAA Method Blank ID: NA	ICP LD ID: WG11556-3	ICP MSD ID: WG11556-5									
	GFAA LD ID: NA	GFAA MSD ID: NA									
	CVAA LD ID: NA	CVAA MSD ID: NA									

420 South 18th Street Omaha, NE 68102

Method Blank

Method Blank ICP Sample ID: WG11556-1 Method Blank GFAA Sample ID: Method Blank CVAA Sample ID: Matrix: Water Units: ug/L

CAS Number	Analyte	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	 u	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	u	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	Calcium	u	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	u	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
439-89-6	Iron	u	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
439-92-1	Lead	u	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
439-95-4	Magnesium	u	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
439-96-5	Manganese	u	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
440-66-6	Zinc	u	10.	з.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

Laboratory Matrix Duplicate

Matrix Duplicate ICP Sample ID: WG11556-3 Matrix Duplicate GFAA Sample ID: Matrix Duplicate CVAA Sample ID:

Matrix: Water Units: ug/L

CAS Number	Analyte	Sample Result	Dup Result	RPD	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	u	u	NC	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	Cadmium	u	u	NC	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	Calcium	18000	17900	0	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	Copper	u	u	NC	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	Iron	60 J	60 J	1	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	Lead	u	u	NC	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	Magnesium	3730	3730	0	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	Manganese	2. J	2. J	1	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	Zinc	u	u	NC	10.	3.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

NC: Not Calculable

J: Estimated concentration below laboratory reporting limit

CVAA Sample: M021076-005

Matrix Spike, Matrix Spike Duplicate

MS ICP S MS GFAA S MS CVAA S	-	WG11556-4	MSD ICP Sample ID: WG11556-5 MSD GFAA Sample ID: MSD CVAA Sample ID:							Matrix: Water Units: ug/L			
CAS Number	Analyte	Sample Result	MS Conc	Spike Added	%Rec MS	MSD Conc	%Rec MSD	RPD	Method	Date Digested	Date Analyzed	Analyst	
7429-90-5	Aluminum	u	6050	6000	101	6040	101	0	EPA 6010B	11-04-02	11-05-02	Shannon	
7440-43-9	Cadmium	u	514.	500.	103	511.	102	1	EPA 6010B	11-04-02	11-05-02	Shannon	
7440-70-2	Calcium	18000	32600	15000	98	32300	95	1	EPA 6010B	11-04-02	11-05-02	Shannon	
7440-50-8	Copper	u	1010	1000	101	1010	101	0	EPA 6010B	11-04-02	11-05-02	Shannon	
7439-89-6	Iron	60 J	5700	6000	94	5670	94	1	EPA 6010B	11-04-02	11-05-02	Shannon	
7439-92-1	. Lead	u	1020	1000	102	1010	101	1	EPA 6010B	11-04-02	11-05-02	Shannon	
7439-95-4	Magnesium	3730	19000	15000	102	18900	101	0	EPA 6010B	11-04-02	11-05-02	Shannon	
7439-96-5	Manganese	2. J	1020	1000	102	1020	102	0	EPA 6010B	11-04-02	11-05-02	Shannon	
7440-66-6	Zinc	u	1110	1000	111	1100	110	1	EPA 6010B	11-04-02	11-05-02	Shannon	

%Rec: Percent of the spike recovered from the matrix

NC: Not Calculable

J: Estimated concentration below laboratory reporting limit ICP Sample: M021076-005

CVAA Sample:

420 South 18th Street Omaha, NE 68102

Laboratory Control Sample

LCS GFAA	Sample ID: Sample ID:	WG11556-2									Matrix: W Units: u	
LCS CVAA	Sample ID:											
					······	Sample	Sample	·····		··· ·· ··· ·· ·· ·		
CAS			LCS	True		Quant	Det		Batch	Date	Date	
Number	Analyte		Result	Value	%Rec	Limit	Limit	Method	ID	Digested	Analyzed	Analyst
7429-90-5	5 Aluminum	·	5940	6000	99	90.	30	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-43-9	9 Cadmium		520.	500.	104	2.5	0.5	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-70-2	2 Calcium		15000	15000	100	300	100	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-50-8	3 Copper		995.	1000	100	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-89-6	5 Iron		5610	6000	94	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-92-1	l Lead		1010	1000	101	10.	2.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-95-4	1 Magnesium		14800	15000	99	120	40	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7439-96-5	5 Manganese		1010	1000	101	4.0	1.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon
7440-66-6	5 Zinc		1090	1000	109	10.	з.	EPA 6010B	WG11556	11-04-02	11-05-02	Shannon

and the second s

いよつ

Total Metals

Project Number:	Willow Creek 6704 CO-WC-MW21 (DISS) M021175-001	Date Sampled: 11/18/02 Date Received: 11/19/0 Date Reported: 12/10/0	2	Matrix: Units:			· · · · · · · · · · · · · · · · · · ·	
CAS		Sample Quant	Sample Det		Batch	Date	Date	

Number	Analyte	Dilution	Result	Limit	Limit	Method	ID	Digested	Analyzed	Analyst
7429-90-5	Aluminum	1	38000	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	1	790.	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	1	196000	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	1	273.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	20	612000	2400	800	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	1	37.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	1	53600	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-5	Manganese	20	141000	80.	20	EPA 6010B		11-27-02		Shannon
7440-66-6	Zinc	30	427000	300	90	EPA 6010B			12-03-02	Shannon

		·····		
	ICP LCS ID:	WG11706-2	ICP MS ID	: WG11706-4
	GFAA LCS ID:	NA	GFAA MS ID	: NA
ICP Method Blank ID: WG11706-1	CVAA LCS ID:	NA	CVAA MS ID	NA
FAA Method Blank ID: NA				
VAA Method Blank ID: NA	ICP LD ID:	WG11706-3	ICP MSD ID	: WG11706-5
	GFAA LD ID:	NA	GFAA MSD ID	NA
	CVAA LD ID:	NA	CVAA MSD ID	: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name Project Numb Client Sampl Sample ID:		Da	ate Sampled: ate Received: ate Reported:	11/19/0	2		: Wâter ug/L			
CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	37700	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	1	785.	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	1	194000	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	1	269.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	20	607000	2400	800	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	1	35.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	1	53100	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-5	Manganese	20	139000	80.	20	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-6	Zinc	30	410000	300	90	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

Quality Assurance / Quality Co	pntrol
ICP LCS ID: WG11706-2	ICP MS ID: WG11706-4
GFAA LCS ID: NA	GFAA MS ID: NA
CVAA LCS ID: NA	CVAA MS ID: NA
ICP LD ID: WG11706-3	ICP MSD ID: WG11706-5
GFAA LD ID: NA	GFAA MSD ID: NA
CVAA LD ID: NA	CVAA MSD ID: NA
	ICP LCS ID: WG11706-2 GFAA LCS ID: NA CVAA LCS ID: NA ICP LD ID: WG11706-3 GFAA LD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix: Water
Project Number:	6704	Date Sampled: 11/18/02	Units: ug/L
Client Sample ID	: CO-WC-MW16 (DISS)	Date Received: 11/19/02	······································
Sample ID:	M021175-005	Date Reported: 12/10/02	
		Sample Sample	

CAS Number	Analyte	Dilution	Result	Quant Limit	Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	175000	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	1	1480	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	1	70200	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	1	4130	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	1	109000	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	1	31.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	1	41100	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-5	Manganese	20	86900	80.	20	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-6	Zinc	30	318000	300	90	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

	Quality Assurance / Quality Contro	01
	ICP LCS ID: WG11706-2	ICP MS ID: WG11706-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11706-1	CVAA LCS ID: NA	CVAA MS ID: NA
GFAA Method Blank ID: NA		
CVAA Method Blank ID: NA	ICP LD ID: WG11706-3	ICP MSD ID: WG11706-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix:	Water	
Project Number:	6704	Date Sampled: 11/17/02	Units:	ug/L	
Client Sample ID:	CO-WC-MW18 (DISS)	Date Received: 11/19/02			
Sample ID:	M021175-007	Date Reported: 12/10/02			

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	17300	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	1	665.	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	1	472000	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	1	700.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	1	610	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	1	2 J	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	l	54300	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-5	Manganese	20	124000	80.	20	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-6	Zinc	30	349000	300	90	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

J: Estimated concentration below laboratory reporting limit.

	Quality Assurance / Quality Contr	rol
	ICP LCS ID: WG11706-2	ICP MS ID: WG11706-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11706-1	CVAA LCS ID: NA	CVAA MS ID: NA
SFAA Method Blank ID: NA		
VAA Method Blank ID: NA	ICP LD ID: WG11706-3	ICP MSD ID: WG11706-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Number: 6704 Date Sampled: 11/17/02 Units: ug/L	
Client Sample ID: CO-WC-MW19 (DISS) Date Received: 11/19/02	
Sample ID: M021175-009 Date Reported: 12/10/02	

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	28700	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	1	560.	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	1	56500	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	1	504.	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	1	100 J	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	1	7 J	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	1	14700	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-5	Manganese	20	31200	80.	20	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-6	Zinc	30	129000	300	90	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

J: Estimated concentration below laboratory reporting limit.

	Quality Assurance / Quality Cont	rol
	ICP LCS ID: WG11706-2	ICP MS ID: WG11706-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11706-1	CVAA LCS ID: NA	CVAA MS ID: NA
FAA Method Blank ID: NA		
VAA Method Blank ID: NA	ICP LD ID: WG11706-3	ICP MSD ID: WG11706-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix:	Water
Project Number:	6704	Date Sampled: 11/17/02	Units:	ug/L
Client Sample ID:	CO-WC-MW17 (DISS)	Date Received: 11/19/02		
Sample ID:	M021175-011	Date Reported: 12/10/02		

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	1130	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	1	34.8	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	1	38900	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	1	6 J	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	1	430	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	1	u	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	1	4610	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
439-96-5	Manganese	1	345.	4.0	1.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-6	Zinc	30	25900	300	90	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

J: Estimated concentration below laboratory reporting limit.

	Quality Assurance / Quality Contro	ol
•	ICP LCS ID: WG11706-2	ICP MS ID: WG11706-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11706-1	CVAA LCS ID: NA	CVAA MS ID: NA
FAA Method Blank ID: NA VAA Method Blank ID: NA	ICP LD ID: WG11706-3	ICP MSD ID: WG11706-5
VAA Mechou Brank 15. NA	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Method Blank

Method Blank ICP Sample ID: WG11706-1 Method Blank GFAA Sample ID: Method Blank CVAA Sample ID:

Matrix: Water Units: ug/L

CAS Number	Analyte	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date. Digested	Date Analyzed	Analyst
429-90-5	Aluminum	u	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	u	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
440-70-2	Calcium	u	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
440-50-8	Copper	u	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
439-89-6	Iron	u	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
439-92-1	Lead	u	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
1439-95-4	Magnesium	u	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
439-96-5	Manganese	u	4.0	1.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
440-66-6	Zinc	u	10.	з.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

Laboratory Matrix Duplicate

Matrix Duplicate ICP Sample ID: WGl1706-3 Matrix Duplicate GFAA Sample ID: Matrix Duplicate CVAA Sample ID: Matrix: Water Units: ug/L

CAS Number	Analyte	Sample Result	Dup Result	RPD	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1300	1290	0	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-9	Cadmium	u	u	NC	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-2	Calcium	109000	109000	0	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-8	Copper	u	u	NC	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-6	Iron	1300	1490	14	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-1	Lead	u	u	NC	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-4	Magnesium	31400	31400	0	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-5	Manganese	114.	113.	1	4.0	1.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-6	Zinc	u	22.	NC	10.	3.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

NC: Not Calculable

** Indicates the value is outside control limits (25) for RPD.

CVAA Sample: M021201-002

Matrix Spike, Matrix Spike Duplicate

MS ICP Sample ID: MS GFAA Sample ID: MS CVAA Sample ID:	WG11706-4		I	MSD GFAA	P Sample I A Sample I A Sample I	D:	WG	11706-5		Matrix: Units:	
CAS Number Analyte	Sample Result	MS Conc	Spike Added	%Rec MS	MSD Conc	%Rec MSD	RPD	Method	Date Digested	Date Analyzed	Analyst
7429-90-5 Aluminum	1300	7570	6000	105	7500	103	1	EPA 6010B	11-27-02	12-03-02	Shannon
7440-43-9 Cadmium	u	495.	500.	99	496.	99	0	EPA 6010B	11-27-02	12-03-02	Shannon
7440-70-2 Calcium	109000	123000	15000	94&	123000	95 &	0	EPA 6010B	11-27-02	12-03-02	Shannon
7440-50-8 Copper	u	1020	1000	102	1020	102	0	EPA 6010B	11-27-02	12-03-02	Shannon
7439-89-6 Iron	1300	6790	6000	91	6720	90	1	EPA 6010B	11-27-02	12-03-02	Shannon
7439-92-1 Lead	u	983.	1000	98	985.	99	0	EPA 6010B	11-27-02	12-03-02	Shannon
7439-95-4 Magnesium	31400	45200	15000	92	45300	93	0	EPA 6010B	11-27-02	12-03-02	Shannon
7439-96-5 Manganese	114.	1120	1000	100	1110	100	0	EPA 6010B	11-27-02	12-03-02	Shannon
7440-66-6 Zinc	ū	1040	1000	104	1040	104	0	EPA 6010B	11-27-02	12-03-02	Shannon

%Rec: Percent of the spike recovered from the matrix

NC: Not Calculable

&: = High original analyte concentration may prevent accurate determination of the spike recovery.

ICP Sample: M021201-002

CVAA Sample:

420 South 18th Street Omaha, NE 68102

Laboratory Control Sample

LCS GFAA	Sample ID: Sample ID: Sample ID:	WG11706-2									Matrix: W Units: u	
CAS Number	Analyte		LCS Result	True Value	*Rec	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-	5 Aluminum		6080	6000	101	90.	30	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-43-	9 Cadmium		505.	500.	101	2.5	0.5	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-70-	2 Calcium		15000	15000	100	300	100	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-50-	8 Copper		1020	1000	102	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-89-	6 Iron		5640	6000	94	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-92-	1 Lead		994.	1000	99	10.	2.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-95-	4 Magnesium		15200	15000	101	120	40	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7439-96-	5 Manganese		1010	1000	101	4.0	1.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon
7440-66-	6 Zinc		1050	1000	105	10.	З.	EPA 6010B	WG11706	11-27-02	12-03-02	Shannon

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix:	Water
Project Number:	6704	Date Sampled: 11/18/02	Units:	ug/L
Client Sample ID:	CO-WC-MW21	Date Received: 11/19/02		
Sample ID:	M021175-002	Date Reported: 12/06/02		

CAS Number	Analyte	Dílution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	38200	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-43-9	Cadmium	1	840.	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-70-2	Calcium	1	201000	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-50-8	Copper	1	261.	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-89-6	Iron	30	618000	3600	1000	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-92-1	Lead	l	35.	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-95-4	Magnesium	1	54700	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-96-5	Manganese	30	143000	120	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-66-6	Zinc	30	425000	300	90	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon

	ICP LCS ID: WG1167	-2 ICP MS ID: WG1	1677-4
	GFAA LCS ID: NA	GFAA MS ID: NA	
ICP Method Blank ID: WG11677-1	CVAA LCS ID: NA	CVAA MS ID: NA	
FAA Method Blank ID: NA			
AA Method Blank ID: NA	ICP LD ID: WG1167	-3 ICP MSD ID: WG1	1677-5
	GFAA LD ID: NA	GFAA MSD ID: NA	
	CVAA LD ID: NA	CVAA MSD ID: NA	

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek			Matrix:	Water	· · · · · · · · · · · · · · · · · · ·	
Project Number:	6704	Date Sampled: 1	1/18/02	Units:	ug/L		
Client Sample ID:	CO-WC-MW20	Date Received:	11/19/02				
Sample ID:	M021175-003	Date Reported:	12/06/02				

AS Jumber	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
429-90-5	Aluminum	1	38200	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-43-9	Cadmium	1	834.	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-70-2	Calcium	1	197000	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-50-8	Copper	1	271.	10.	2.	EPA 6010B	WG11677	11~21-02	11-27-02	Shannon
439-89-6	Iron	30	619000	3600	1000	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-92-1	Lead	1	36.	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-95-4	Magnesium	· 1	53900	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-96-5	Manganese	30	144000	120	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-66-6	Zinc	30	458000	300	90	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon

	ICP LCS ID:	WG11677-2	ICP MS ID:	WG11677-4
	GFAA LCS ID:	NA	GFAA MS ID:	NA
ICP Method Blank ID: WG11677-1	CVAA LCS ID:	NA	CVAA MS ID:	NA
FAA Method Blank ID: NA				
VAA Method Blank ID: NA	ICP LD ID:	WG11677-3	ICP MSD ID:	WG11677-5
	GFAA LD ID:	NA	GFAA MSD ID:	NA
	CVAA LD ID:	NA	CVAA MSD ID:	NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek					Matrix	: Water			
Project Number	: 6704	Da	te Sampled:	11/18/02		Units:	ug/L			
Client Sample	ID: CO-WC-MW16	Da	te Received:	11/19/0	2		-			
Sample ID:	M021175-006	Da	te Reported:	12/06/0	2					
				Sample	Sample			·····		
CAS				Quant	Det		Batch	Date	Date	
Number A:	nalyte	Dilution	Result	Limit	Limit	Method	ID	Digested	Analyzed	Analyst

7429-90-5	Aluminum	1	174000	90.	30	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7440-43-9	Cadmium	l	1490	2.5	0.5	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7440-70-2	Calcium	1	71300	300	100	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7440-50-8	Copper	1	4080	10.	2.	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7439-89-6	Iron	30	110000	3600	1000	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7439-92-1	Lead	1	30.	10.	2.	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
1439-95-4	Magnesium	1	41200	120	40	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7439-96-5	Manganese	1	92800	4.0	1.	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon
7440-66-6	Zinc	30	339000	300	90	EPA 6010B	WG11677 11-21-02	11-27-02	Shannon

	ICP LCS ID:	WG11677-2	ICP MS ID: WG11677-4
	GFAA LCS ID:	NA	GFAA MS ID: NA
ICP Method Blank ID: WG11677-1	CVAA LCS ID:	NA	CVAA MS ID: NA
FAA Method Blank ID: NA			
VAA Method Blank ID: NA	ICP LD ID:	WG11677-3	ICP MSD ID: WG11677-5
	GFAA LD ID:	NA	GFAA MSD ID: NA
	CVAA LD ID:	NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Total Metals

Project Name:	Willow Creek		Matrix:	Water
Project Number:	6704	Date Sampled: 11/17/02	Units:	ug/L
Client Sample ID:	CO-WC-MW18	Date Received: 11/19/02		
Sample ID:	M021175-008	Date Reported: 12/06/02		

CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	1	17200	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-43-9	Cadmium	1	723.	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-70-2	Calcium	1	528000	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-50-8	Copper	1	700.	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-89-6	Iron	1	160	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-92-1	Lead	1	4 J	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-95-4	Magnesium	1	57000	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-96-5	Manganese	30	132000	120	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-66-6	Zinc	30	366000	300	90	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon

J: Estimated concentration below laboratory reporting limit.

Quality Assurance / Quality Control						
······································	ICP LCS ID: WG11677-2	ICP MS ID: WG11677-4				
	GFAA LCS ID: NA	GFAA MS ID: NA				
ICP Method Blank ID: WG11677-1	CVAA LCS ID: NA	CVAA MS ID: NA				
GFAA Method Blank ID: NA						
CVAA Method Blank ID: NA	ICP LD ID: WG11677-3	ICP MSD ID: WG11677-5				
	GFAA LD ID: NA	GFAA MSD ID: NA				
	CVAA LD ID: NA	CVAA MSD ID: NA				

420 South 18th Street Omaha, NE 68102

Total Metals

		200							
e: Willow Creek ber: 6704 le ID: CO-WC-MW19 M021175-010	Da	te Received:	11/19/0	2					
Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst
Aluminum	l	28200	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Cadmium	1	586.	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Calcium	1	59400	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Copper	1	488.	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Iron	1	140	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Lead	1	7 J	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Magnesium	1	14600	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Manganese	30	31600	120	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
Zinc	30	132000	300	90	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
	ber: 6704 le ID: CO-WC-MW19 M021175-010 Analyte Aluminum Cadmium Cadmium Calcium Copper Iron Lead Magnesium Manganese	Der: 6704 Da le ID: CO-WC-MW19 Da M021175-010 Da Analyte Dilution Aluminum 1 Cadmium 1 Calcium 1 Copper 1 Iron 1 Lead 1 Magnesium 1 Manganese 30	Der: 6704 Date Sampled: le ID: CO-WC-MW19 Date Received: M021175-010 Date Reported: Analyte Dilution Result Aluminum 1 28200 Cadmium 1 586. Calcium 1 59400 Copper 1 488. Iron 1 140 Lead 1 7 J Magnesium 1 14600 Manganese 30 31600	Der: 6704 Date Sampled: 11/17/02 le ID: CO-WC-MW19 Date Received: 11/19/02 M021175-010 Date Reported: 12/06/02 Analyte Dilution Result Limit Aluminum 1 28200 90. Cadmium 1 586. 2.5 Calcium 1 59400 300 Copper 1 488. 10. Iron 1 140 120 Lead 1 7 10. Magnesium 1 14600 120	Der: 6704 Date Sampled: 11/17/02 Le ID: CO-WC-MW19 Date Received: 11/19/02 M021175-010 Date Reported: 12/06/02 Analyte Dilution Result Limit Limit Aluminum 1 28200 90. 30 Cadmium 1 586. 2.5 0.5 Calcium 1 59400 300 100 Copper 1 488. 10. 2. Iron 1 140 120 40 Lead 1 7 10. 2. Magnesium 1 14600 120 40	Der: 6704 Date Sampled: 11/17/02 Units: le ID: CO-WC-MW19 M021175-010 Date Received: 11/19/02 Units: Analyte Dilution Result 12/06/02 Sample Sample Quant Det Analyte Dilution Result Limit Limit Method Aluminum 1 28200 90. 30 EPA 6010B Cadmium 1 586. 2.5 0.5 EPA 6010B Calcium 1 59400 300 100 EPA 6010B Iron 1 140 120 40 EPA 6010B Lead 1 7 10. 2. EPA 6010B Magnesium 1 14600 120 40 EPA 6010B	Det: 6704 Date Sampled: 11/17/02 Units: ug/L le ID: CO-WC-MW19 Date Received: 11/19/02 Units: ug/L M021175-010 Date Reported: 12/06/02 Sample Sample Batch Analyte Dilution Result Limit Limit Method ID Aluminum 1 28200 90. 30 EPA 6010B WG11677 Cadmium 1 586. 2.5 0.5 EPA 6010B WG11677 Capper 1 488. 10. 2. EPA 6010B WG11677 Iron 1 140 120 40 EPA 6010B WG11677 Lead 1 7 10. 2. EPA 6010B WG11677 Magnesium 1 14600 120 40 EPA 6010B WG11677	Det: 6704 Date Sampled: 11/17/02 Units: ug/L le ID: CO-WC-MW19 Date Received: 11/19/02 Date Reported: 12/06/02 M021175-010 Date Reported: 12/06/02 Sample Sample Date Analyte Dilution Result Limit Limit Method ID Digested Aluminum 1 28200 90. 30 EPA 6010B WG11677 11-21-02 Cadmium 1 586. 2.5 0.5 EPA 6010B WG11677 11-21-02 Calcium 1 59400 300 100 EPA 6010B WG11677 11-21-02 Copper 1 488. 10. 2. EPA 6010B WG11677 11-21-02 Iron 1 140 120 40 EPA 6010B WG11677 11-21-02 Magnesium 1 14600 120 40 EPA 6010B WG11677 11-21-02 Manganese 30 31600 120 30 EPA 6010B WG11677 11-21-02	Det: 6704 Date Sampled: 11/17/02 Units: ug/L le ID: CO-WC-MW19 Date Received: 11/19/02 Date Reported: 12/06/02 M021175-010 Date Reported: 12/06/02 Sample Sample Date Analyte Dilution Result Limit Limit Method ID Date Date Aluminum 1 28200 90. 30 EPA 6010B WG11677 11-21-02 11-27-02 Cadmium 1 586. 2.5 0.5 EPA 6010B WG11677 11-21-02 11-27-02 Capper 1 488. 10. 2. EPA 6010B WG11677 11-21-02 11-27-02 Iron 1 140 120 40 EPA 6010B WG11677 11-21-02 11-27-02 Iron 1 140 120 40 EPA 6010B WG11677 11-21-02 11-27-02 Magnesium 1 14600 120 40 EPA 6010B WG11677 11-21-02 11-27-02 Magnesium 1 1

J: Estimated concentration below laboratory reporting limit.

Quality Assurance / Quality Control					
,	ICP LCS ID: WG11677-2	ICP MS ID: WG11677-4			
	GFAA LCS ID: NA	GFAA MS ID: NA			
ICP Method Blank ID: WG11677-1	CVAA LCS ID: NA	CVAA MS ID: NA			
GFAA Method Blank ID: NA					
CVAA Method Blank ID: NA	ICP LD ID: WG11677-3	ICP MSD ID: WG11677-5			
	GFAA LD ID: NA	GFAA MSD ID: NA			
	CVAA LD ID: NA	CVAA MSD ID: NA			

420 South 18th Street Omaha, NE 68102

Total Metals

Project Nam Project Num Client Samp Sample ID:		Da	te Sampled: te Received: te Reported:	11/19/0	2	Matrix Units:	: Water ug/L				
CAS Number	Analyte	Dilution	Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date Digested	Date Analyzed	Analyst	
7429-90-5	Aluminum	1	1120	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7440-43-9	Cadmium	1	37.1	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7440-70-2	Calcium	1	41900	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7440-50-8	Copper	1	5 J	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7439-89-6	Iron	1	40 J	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7439-92-1	Lead	1	u	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7439-95-4	Magnesium	1	4680	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7439-96-5	Manganese	1	275.	4.0	1.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	
7440-66-6	Zinc	30	26600	300	90	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon	

u: Analyte was analyzed for but not detected at or above the sample reporting limit

J: Estimated concentration below laboratory reporting limit.

	Quality Assurance / Quality Control	L
	ICP LCS ID: WG11677-2	ICP MS ID: WG11677-4
	GFAA LCS ID: NA	GFAA MS ID: NA
ICP Method Blank ID: WG11677-1	CVAA LCS ID: NA	CVAA MS ID: NA
GFAA Method Blank ID: NA		
CVAA Method Blank ID: NA	ICP LD ID: WG11677-3	ICP MSD ID: WG11677-5
	GFAA LD ID: NA	GFAA MSD ID: NA
	CVAA LD ID: NA	CVAA MSD ID: NA

420 South 18th Street Omaha, NE 68102

Method Blank

Method Blank ICP Sample ID: WG11677-1 Method Blank GFAA Sample ID: Method Blank CVAA Sample ID:

Matrix: Water Units: ug/L

CAS Number	Analyte		Result	Sample Quant Limit	Sample Det Limit	Method	Batch ID	Date . Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	·····	u	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-43-9	Cadmium		u	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-70-2	Calcium		u	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-50-8	Copper		u	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-89-6	Iron		u	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-92-1	Lead		u	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-95-4	Magnesium		u	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-96-5	Manganese		u	4.0	1.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-66-6	Zinc		u	10.	З.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

420 South 18th Street Omaha, NE 68102

Laboratory Matrix Duplicate

Matrix Duplicate ICP Sample ID: WG11677-3 Matrix Duplicate GFAA Sample ID: Matrix Duplicate CVAA Sample ID:

Matrix: Water Units: ug/L

CAS Number	Analyte	Sample Result	Dup Result	RPD	Sample Quant Limit	Sample Det Limit		Batch ID	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	30 J	50 J	54**	90.	30	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-43-9	Cadmium	u	u	NC	2.5	0.5	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-70-2	Calcium	76400	75600	1	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-50-8	Copper	u	16.883	NC	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-89-6	Iron	660	750	13	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-92-1	Lead	u	u	NC	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-95-4	Magnesium	31200	30800	1	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
439-96-5	Manganese	253.	249.	2	4.0	1.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
440-66-6	Zinc	16.	15.	6	10.	3.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon

u: Analyte was analyzed for but not detected at or above the sample reporting limit

NC: Not Calculable

J: Estimated concentration below laboratory reporting limit

** Indicates the value is outside control limits (25) for RPD.

CVAA Sample: M021162-002

Matrix Spike, Matrix Spike Duplicate

MS GFAA S	Sample ID: Sample ID: Sample ID:	WG11677-4		I	MSD GFAA	Sample Sample Sample	ID:	WG:	11677-5		Matrix: Units:	
CAS Number	Analyte	Sample Result	MS Conc	Spike Added	*Rec MS	MSD Conc	*Rec MSD	RPD	Method	Date Digested	Date Analyzed	Analyst
7429-90-5	Aluminum	30 J	5990	6000	99	5990	99	0	EPA 6010B	11-21-02	11-27-02	Shannon
7440-43-9	Cadmium	u	545.	500.	109	541.	108	1	EPA 6010B	11-21-02	11-27-02	Shannon
7440-70-2	Calcium	76400	91100	15000	98&	90600	95 &	0	EPA 6010B	11-21-02	11-27-02	Shannon
7440-50-8	Copper	u	983.	1000	98	983.	98	0	EPA 6010B	11-21-02	11-27-02	Shannon
7439-89-6	Iron	660	6600	6000	99	6550	98	1	EPA 6010B	11-21-02	11-27-02	Shannon
7439-92-1	. Lead	u	1050	1000	105	1040	104	1	EPA 6010B	11-21-02	11-27-02	Shannon
7439-95-4	Magnesium	31200	45300	15000	94	45300	94	0	EPA 6010B	11-21-02	11-27-02	Shannon
7439-96-5	Manganese	253.	1310	1000	105	1300	105	1	EPA 6010B	11-21-02	11-27-02	Shannon
7440-66-6	-	16.	1130	1000	112	1130	111	0	EPA 6010B	11-21-02	11-27-02	Shannon

%Rec: Percent of the spike recovered from the matrix

&: = High original analyte concentration may prevent accurate determination of the spike recovery.

J: Estimated concentration below laboratory reporting limit ICP Sample: M021162-002

CVAA Sample:

Laboratory Control Sample

LCS GFAA :	Sample ID: Sample ID: Sample ID:	WG11677-2				·····			<u> </u>		Matrix: W Units: u	
CAS Number	Analyte		LCS Result	True Value	*Rec	Sample Quant Limit	Sample Det Limit	Method	Batch , ID	Date Digested	Date Analyzed	Analyst
7429-90-5		<u> </u>	6080	6000	101	90.	30	EPA 6010B		11-21-02	11-27-02	Shannon
7440-43-9			507.	500.	101	2.5	0.5	EPA 6010B		11-21-02	11-27-02	Shannon
7440-70-2	Calcium		15100	15000	101	300	100	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-50-8	Copper		1020	1000	102	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-89-6	Iron		5640	6000	94	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-92-1	Lead		996.	1000	100	10.	2.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-95-4	Magnesium		15300	15000	102	120	40	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7439-96-5	Manganese		1020	1000	102	4.0	1.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon
7440-66-6	-		1080	1000	108	10.	3.	EPA 6010B	WG11677	11-21-02	11-27-02	Shannon

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW21		Dat Dat Dat		Matrix: Units: Sample ID:	Water mg/L M021175-002			
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-02	Sulfate	3300 D	400	6	EPA 375.2	WG11728	12/02/02	Laubscher

D: Result quantitated from a 1:20 dilution.

FAX: (402) 341-5448 PHONE: (402) 444-4300

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project N Project N			-	ed: 11/: ved: 11/:			Matrix: Units:	Water mg/L
2	mple ID: CO-WC-MW20			ted: 12/0				M021175-003
CAS							Date	
Number	Analyte	Result	LRL	MDL	Method	Batch ID	Analyzed	Analyst
MRL-02	Sulfate	3300 D	400	6	EPA 375.2	WG11728	12/02/02	Laubscher

D: Result quantitated from a 1:20 dilution.

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW16		Dat Dat Dat		Matrix: Units: Sample ID:	Water mg/L M021175-006			
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-02	Sulfate	3600 D	400	б	EPA 375.2	WG11728	12/02/02	Laubscher

D: Result quantitated from a 1:20 dilution.

420 South 18th Street Omaha, NE 68102

A. .

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW18		Dat	e Sampl e Recei e Repor		Matrix: Units: Sample ID:	Water mg/L M021175-008		
CAS Number An	alyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-02 Su	lfate	2300 D	400	6	EPA 375.2	WG11728	12/02/02	Laubscher

D: Result quantitated from a 1:20 dilution.

420 South 18th Street Omaha, NE 68102

n in Seiter

Wet Chemistry Sample Report

Project Name: Project Number: Client Sample ID	Willow Creek 6704 : CO-WC-MW19	Dat	e Recei	ed: 11/ ved: 11/ ted: 12/	19/02		Matrix: Units: Sample ID:	Water mg/L M021175-010
CAS Number Ana	lyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-02 Sul	fate	690 D	400	6	EPA 375.2	WG11728	12/02/02	Laubscher

D: Result quantitated from a 1:20 dilution.

420 South 18th Street Omaha, NE 68102

· . ·

.

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW17		Dat	e Recei	ed: 11/ ved: 11/ ted: 12/		Matrix: Units: Sample ID:	Water mg/L M021175-012	
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-02	Sulfate	170 D	40	6	EPA 375.2	WG11728	12/02/02	Laubscher

D: Result quantitated from a 1:2 dilution.

420 South 18th Street Omaha, NE 68102

Page 1 of 1

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Method Blank) Report

Method Blank Sample ID: WG11728-1 Units: mg/L							Matrix: Water			
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst		
MRL-02	Sulfate	u	20	6	EPA 375.2	WG11728	12/02/02	Laubscher		

QC Sample:

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

Fax: (402) 341-5448 Phone: (402) 444-4300

Page 1 of 1

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Laboratory Matrix Duplicate) Report

Project Project Units: Client	Number:	Willow Creek 6704 mg/L Batch Specific								Matri	-	WG11728-3 Water 12/02/02
CAS		· · · · · · · · · · · · · · · · · · ·	Sample	Dup		QC			· · · · · · · · · · · · · · · · · · ·		Date	
Number	Analy	te	Result	Result	RPD	Limits	LRL	MDL	Method	Batch ID	Analyzed	Analyst

QC Sample: M021117-002

Batch Specific: The sample used for batch QC was from another project within this work group.

420 South 18th Street Omaha, NE 68102

Fax: (402) 341-5448 Phone: (402) 444-4300

Wet Chemistry (Matrix Spike, Matrix Spike Duplicate) Report

Project Name: Project Number: Client ID:		Willow Creek 6704 Batch Specific									MS Sample MSD Sample		
Units: Analysis		mg/L 12/02/02									Matrix: Analyst:	Water Laubscher	
CAS Number	Analyt	;e	Sample Result	Spike Added	Conc MS	%Rec MS	Conc MSD	%Rec MSD	RPD	Method	Batch ID	Acceptance Range(%)	
MRL-02	Sulfat		270	60	320	102	330	116	12	EPA 375.2	WG11728	80-120	

Note: 94 mL sample & 6 mL of standard [(270) x (0.94)] = 260 used in calculation of %Rec. Results are rounded to 2 significant figures.

Comments: The RPD limit is 20.

QC Sample: M021117-002

%Rec: Percent of the spike recovered from the matrix

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Laboratory Control Sample) Report

•	Dle ID: WG11728-2 5 Date: 12/02/02								Matr Unit		
CAS Number	Analyte	LCS Result	True Value	*Rec	QC % Limits	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-02	Sulfate	59.	60	98	80-120	20	6	EPA 375.2	WG11728	12/02/02	Laubscher

QC Sample:

42 Juth 18th Street Omaha, NE 68102 Phone: (402) 444-4300

Fax:

(402) 341-5448

Wet Chemistry Sample Report

Project Name: Project Numbe	er: 6704	Dat	e Recei	ed: 11/ ved: 11/	19/02		Matrix: Units:	Water mg/L
Client Sample CAS	2 ID: CO-WC-MW21	Dat	e Repor	ted: 11/:	29/02			M021175-002
Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01	Chloride	4. J	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

J: Estimated Concentration below laboratory reporting limit.

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW20		Dat	e Recei	ed: 11/ ved: 11/ ted: 11/	19/02		Matrix: Units: Sample ID:	Water mg/L M021175-003
CAS Number A	nalyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01 C	Chloride	4. J	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

J: Estimated Concentration below laboratory reporting limit.

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW16		Dat	te Recei	ed: 11/ ved: 11/ ted: 11/		Matrix: Units: Sample ID:	Water mg/L M021175-006	
CAS Number Analyte		Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01 Chloride	e	4.J	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

J: Estimated Concentration below laboratory reporting limit.

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW18		Dat	e Recei	ed: 11/ ved: 11/ ted: 11/2		Matrix: Units: Sample ID:	Water mg/L M021175-008	
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01	Chloride	7.7	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

Wet Chemistry Sample Report

Project Nar Project Nur	nber: 6704	Dat	e Recei	ed: 11/3 ved: 11/3	19/02		Matrix: Units:	Water mg/L
CAS Number	ble ID: CO-WC-MW19 Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	M021175-010
MRL-01	Chloride	2. J	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

J: Estimated Concentration below laboratory reporting limit.

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW17		Dat	e Recei	ed: 11/ ved: 11/ ted: 11/	19/02		Matrix: Units: Sample ID:	Water mg/L M021175-012
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01	Chloride	u	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

Wet Chemistry (Method Blank) Report

Method Blar Units: mg/I	nk Sample ID: WG11713-1 L					Matrix: W		
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01	Chloride	ų	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

QC Sample:

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

Fax: (402) 341-5448 Phone: (402) 444-4300

EPA 325.2 WG11713 11/27/02 Laubscher

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Laboratory Matrix Duplicate) Report

Project Name: Project Number: Units: Client ID:								LD Sample ID: Matrix: Analysis Date	Water
CAS Number Analy	te	Sample Result	Dup Result R	QC PD Limits	LRL	MDL	Method	Date Batch ID Analyze	ed Analyst

25

5.0

1

2

QC Sample: M021147-003

Chloride

MRL-01

Batch Specific: The sample used for batch QC was from another project within this work group.

81.

80.

420 South 18th Street Omaha, NE 68102

Fax: (402) 341-5448 Phone: (402) 444-4300

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Matrix Spike, Matrix Spike Duplicate) Report

Project N Project N Client ID	lumber:	Willow Creek 6704 Batch Specific									MS Sample MSD Sample	
Units: Analysis		mg/L 11/27/02									Matrix: Analyst:	Water Laubscher
CAS Number	Analyt	te	Sample Result	Spike Added	Conc MS	*Rec MS	Conc MSD	%Rec MSD	RPD	Method	Batch ID	Acceptance Range(%)
MRL-01	Chlori	ide	80.	30	110	95	110	103	7	EPA 325.2	WG11713	80-120

Note: 97 mL sample & 3 mL of standard [(80.) x (0.97)] = 78. used in calculation of %Rec. Results are rounded to 2 significant figures.

Comments: The RPD limit is 20.

QC Sample: M021147-003

*Rec: Percent of the spike recovered from the matrix

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Laboratory Control Sample) Report

-	ble ID: WG11713-2 Date: 11/27/02								Matr Unit		
CAS Number	Analyte	LCS Result	True Value	*Rec	QC % Limits	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
MRL-01	Chloride	30.	30	100	80-120	5.0	1	EPA 325.2	WG11713	11/27/02	Laubscher

QC Sample:

42L uth 18th Street Omaha, NE 68102

(402) 341-5448 Fax: Phone: (402) 444-4300

Wet Chemistry Sample Report

Project Nam Project Num Client Samp		Dat	e Recei	ed: 11/ ved: 11/ ted: 11/	19/02		Matrix: Units: Sample ID: M02		
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	,Date Analyzed	Analyst	
1317-65-3	Alkalinity (as CaCO3)	54.	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	
1317-65-3	Bicarbonate Alkalinity (as CaCO3)	54.	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	
1317-65-3	Carbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW20		Date Sampled: 11/18/02 Date Received: 11/19/02 Date Reported: 11/25/02					Matrix: Water Units: mg/L Sample ID: M021175-003		
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst	
1317-65-3	Alkalinity (as CaCO3)	56.	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	
1317-65-3	Bicarbonate Alkalinity (as CaCO3)	56.	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	
1317-65-3	Carbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW16		Dat	e Receiv	ed: 11/1 ved: 11/1 ced: 11/2		Matrix: Units: Sample ID:	Water mg/L M021175-006	
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
1317-65-3	Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher
1317-65-3	Bicarbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher
1317-65-3	Carbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW18		Dat	e Recei	ed: 11/2 ved: 11/2 ted: 11/2	19/02		Matrix: Units: Sample ID:	Water mg/L M021175-008	
CAS Number	Analyte	Result	LRL.	MDL	Method	Batch ID	Date Analyzed	Analyst	
1317-65-3	Alkalinity (as CaCO3)	53.	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	
1317-65-3	Bicarbonate Alkalinity (as CaCO3)	53.	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	
1317-65-3	Carbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher	

.

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW19		Dat	e Recei	ed: 11/ ved: 11/ ted: 11/		Matrix: Units: Sample ID:	Water mg/L M021175-010	
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
1317-65-3	Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher
1317-65 - 3	Bicarbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher
1317-65-3	Carbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

Wet Chemistry Sample Report

Project Name: Willow Creek Project Number: 6704 Client Sample ID: CO-WC-MW17		Dat	e Recei	ed: 11/2 ved: 11/2 ted: 11/2	19/02		Matrix: Units: Sample ID:	Water mg/L M021175-012
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
1317-65-3	Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher
1317-65-3	Bicarbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher
1317-65-3	Carbonate Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Method Blank) Report

Method Blank Units: mg/L	Sample ID: WG11697-1			Matrix: W	later			
CAS Number	Analyte	Result	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
1317-65-3	Alkalinity (as CaCO3)	u	20	7	EPA 310.2	WG11697	11/25/02	Laubscher

QC Sample:

u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

Fax: (402) 341-5448 Phone: (402) 444-4300

50

EPA 310.2 WG11697 11/25/02 Laubscher

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Laboratory Matrix Duplicate) Report

Project Name: Project Number: Units: Client ID:									Matr	-	WG11697-3 Water 11/25/02
CAS Number Analy	te	Sample Result	Dup Result	RPD	QC Limits	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst

25

20

7.0

NC

u

u

1317-65-3 Alkalinity (as CaCO3)

QC Sample: M021175-012

NC: Parameter is Not Calculable u: Below Method Detection Limit

420 South 18th Street Omaha, NE 68102

.....

.

Fax: (402) 341-5448 Phone: (402) 444-4300

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Matrix Spike, Matrix Spike Duplicate) Report

Project Name: Project Number:	Willow Creek 6704									MS Sample MSD Sample	
Client ID: Units: Analysis Date:	CO-WC-MW17 mg/L 11/25/02									Matrix: Analyst:	Water Laubscher
CAS Number Analyt	ce	Sample Result	Spike Added	Conc MS	%Rec MS	Conc MSD	%Rec MSD	RPD	Method	Batch ID	Acceptance Range(%)
1317-65-3 Alkali	inity (as CaCO3)	u	100	86	86	82	82	4	EPA 310.2	WG11697	80-120

Note: 99 mL sample & 1 mL of standard [(u) x (0.99)] = 0 used in calculation of %Rec. Results are rounded to 2 significant figures.

Comments: The RPD limit is 20.

QC Sample: M021175-012

%Rec: Percent of the spike recovered from the matrix
u: Below Method Detection Limit

DEPARTMENT OF THE ARMY Corps of Engineers Environmental Chemistry Branch Omaha Laboratory

Wet Chemistry (Laboratory Control Sample) Report

LCS Sample ID: WG11697-2 Analysis Date: 11/25/02								Mat: Unit		
CAS Number Analyte	LCS Result	True Value	*Rec	QC % Limits	LRL	MDL	Method	Batch ID	Date Analyzed	Analyst
1317-65-3 Alkalinity (as CaCO3)		100	99	80-120	20	7	EPA 310.2	WG11697	11/25/02	Laubscher

QC Sample:

42 Juth 18th Street Omaha, NE 68102

Fax: (402) 341-5448 Phone: (402) 444-4300

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description:	Water
Lab Sample No.:	M021066-002
Client Sample ID:	CO-WC-SB01-05

Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result pH units	Date <u>Analyzed</u>
EPA-150.1	pH	8.47	01 Nov 02

Laboratory Comments:

Tour. N. Arn Approved By:

Date: 11.7.02

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description:	Water
Lab Sample No.:	M021066-004
Client Sample ID:	CO-WC-SB01-3

Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result pH units	Date <u>Analyzed</u>
EPA-150.1	pH	3.74	01 Nov 02

Laboratory Comments:

Kun.w. Arn Approved By:

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-006 Client Sample ID: CO-WC-SB01-7 Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result pH units	Date <u>Analvzed</u>
EPA-150.1	pH	2.75	01 Nov 02

Laboratory Comments:

Trun n. Arm Approved By:

Date: 11.7.02

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-008 Client Sample ID: CO-WC-SB01-10

Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result pH units	Date <u>Analyzed</u>
EPA-150.1	pH	3.25	01 Nov 02

Laboratory Comments:

Yun N Approved By: ne

Date: <u>/1.7.02</u>

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-010 Client Sample ID: CO-WC-SB01-15 Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result <u>pH units</u>	Date <u>Analyzed</u>
EPA-150.1	pH	3.97	01 Nov 02

Laboratory Comments:

Junn. Am Approved By:

Date: ______

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-012 Client Sample ID: CO-WC-SB01-20 Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result pH units	Date <u>Analyzed</u>
EPA-150.1	pH	3.34	01 Nov 02

Laboratory Comments:

Kun .. An Approved By:

Date: ______

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-002 Client Sample ID: CO-WC-SB01-05		Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond	
Procedure	Analysis	Result <u>µmho/cm</u>	Date <u>Analyzed</u>
EPA-120.1	Conductivity	93.9	01 Nov 02

Laboratory Comments:

Form w. Avom Approved By:

Date: 11.7.02

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-004 Client Sample ID: CO-WC-SB01-3		Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond	
Procedure	Analysis	Result µmho/cm	Date <u>Analvzed</u>
EPA-120.1	Conductivity	249	01 Nov 02

Laboratory Comments:

From . N. Aver Approved By:

Date: 11.7.02

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-006 Client Sample ID: CO-WC-SB01-7 Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond

Procedure	Analysis	Result µmho/cm	Date <u>Analyzed</u>
EPA-120.1	Conductivity	1400	01 Nov 02

Laboratory Comments:

rem n. Aram Approved By:

Date: 11. 7. 02

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-008 Client Sample ID: CO-WC-SB01-10		Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond	
<u>Procedure</u>	Analysis	Result <u>µmho/cm</u>	Date <u>Analyzed</u>
EPA-120.1	Conductivity	914	01 Nov 02

Laboratory Comments:

Tom w. Arny Approved By:

Date: 11.7.02

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-010 Client Sample ID: CO-WC-SB01-15		Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond		
Procedure	Analysis	Result <u>µmho/cm</u>	Date <u>Analyzed</u>	
EPA-120.1	Conductivity	2320	01 Nov 02	

Laboratory Comments:

Fran . nr. Arm Approved By:

Date: <u>11. 7.02</u>

Wet Chemistry

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Lab Sample No.: M021066-012 Client Sample ID: CO-WC-SB01-20		Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond	
Procedure	<u>Analysis</u>	Result <u>µmho/cm</u>	Date <u>Analyzed</u>
EPA-120.1	Conductivity	330	01 Nov 02

Laboratory Comments:

Fim.n. Arma Approved By:

Date: 11.7.02

Wet Chemistry

Method Blank

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description: Water Method Blank ID: WG11559-1 Analyst: J. Bond

Procedure	Analysis	Result <u>µmho/cm</u>	Date Analyzed	
EPA-120.1	Conductivity	0.935	01 Nov 02	

Laboratory Comments:

Frun Arma Approved By:

Date: 11., 7.02

Wet Chemistry

Laboratory Duplicate

FAMIS Number: 6704 Project Name: Willow Creek

Sample Description Lab Sample No. Client Sample ID Lab Duplicate ID	: M021066-002 : CO-WC-SB01-05		Date Sampled: 23 Oct 02 Date Received: 24 Oct 02 Analyst: J. Bond				
· · · · · · · · · · · · · · · · · · ·		RESULTS (µ					
<u>Procedure</u>	Analysis	Sample <u>Result</u>	Duplicate <u>Result</u>	<u>RPD</u>	Date <u>Analyzed</u>		
EPA-120.1	Conductivity	93.9	93.6	0.3	01 Nov 02		

Laboratory Comments:

Tiem-N. Arma Approved By:

Date: 1-16-03

Wet Chemistry

Laboratory Control Sample (LCS)

FAMIS Number: 6704 Project Name: Willow Creek

> Procedure: EPA-120.1 LCS ID: WG11559-3 (100 μmho/cm), WG11559-4 (1000 μmho/cm) Analyst: J. Bond

RESULTS (µmho/cm)								
Sample	Known <u>Concentration</u>	LCS <u>Result</u>	Percent <u>Recovery</u>	Date <u>Analyzed</u>				
WG11559-3	100	102	102	01 Nov 02				
WG11559-4	1000	986	98.6	01 Nov 02				

Laboratory Comments:

Control Limits: 80-120% for Percent Recovery.

run . N. Am Approved By:

Date: 11.7.02

Client: US Army Corps of Engineers Attn: Laura Percifield	Date Sample Rptd: 11/14/2002 Date Sample Recd: 11/08/2002
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 82898 Client P.O.: 6704

Lab Number: 02110526 Sample Description: M021066-002 Date Sampled: 10/23/2002 Time Sampled:

Analysis	Conc	entration	Units	Dilution Factor	Reporting Limit
Acidity, as CaCO3	31	•	mg/L at pH=8.	3 1.0	20
Analysis	Date Prepared	Date Analyzed	QC Batch Anal	yst Metho	d(s)
Acidity, as CaCO3	N/A	11/12/2002	021112-1 KI	M SM 23	10B

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker Technical Manager

1804 GLENDALE ROAD • SALINA, KANSAS 67401-6675 785-827-1273 • 800-535-3076 • FAX 785-823-7830

US Army Corps of Engineers	Date Sample Rptd: 11/14/2002
Attn: Laura Percifield	Date Sample Recd: 11/08/2002
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 82898
	Client P.O.: 6704

Lab Number: 02110527 Sample Description: M021066-004 ient P.O.: 6704 Date Sampled: 10/23/2002

Time Sampled:

Analysis	Conce	entration	Units	Diluti <u>Facto</u>	J
Acidity, as CaCO3	56		mg/L at pH=8.3	3 1.0	20
Analysis	Date <u>Prepared</u>	Date Analyzed	QC Batch Anal	yst Me	thod(s)
Acidity, as CaCO3	N/A	11/12/2002	021112-1 KL	M SM	2310B

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker Technical Manager

--

188

Client: US Army Corps of Engineers Attn: Laura Percifield 420 South 18th Street Omaha, NE 68102-2586 Date Sample Recd: 11/08/2002 Continental File No: 5409 Continental Order No: 82898 Client P.O.: 6704

Lab Number: 02110528 Sample Description: M021066-006 Date Sampled: 10/23/2002 Time Sampled:

Analysis	Conce	entration	Units	Diluti <u>Facto</u>	· · · · · · · · · · · · · · · · · · ·
Acidity, as CaCO3	35	0.	mg/L at pH=8.	.3 1.0	20
Analysis	Date Prepared	Date Analyzed	QC Batch Anal	Lyst Me	thod(s)
Acidity, as CaCO3	N/A	11/12/2002	021112-1 KI	LM SM	1 2310B

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker Technical (Manager

5

Client:		Date Sample Rptd: 11/14/2002 Date Sample Recd: 11/08/2002
	420 South 18th Street	Continental File No: 5409
	Omaha, NE 68102-2586	Continental Order No: 82898
		Client P.O.: 6704

Lab Number: 02110529 Sample Description: M021066-008 Date Sampled: 10/23/2002 Time Sampled:

Page:

Analysis	Conce	entration	Units	Dilut Fact	±
Acidity, as CaCO3	17	9.	mg/L at pH=8.	3 1.0	20
Analysis	Date Prepared	Date Analyzed	QC Batch Anal	yst M	ethod(s)
Acidity, as CaCO3	N/A	11/12/2002	021112-1 KL	M S	M 2310B

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker Technical Manager

		Date Sample Rptd: 11/14/2002 Date Sample Recd: 11/08/2002
	20 South 18th Street	Continental File No: 5409
Or	maha, NE 68102-2586	Continental Order No: 82898
		Client P.O.: 6704

Lab Number: 02110530 Sample Description: M021066-010 Date Sampled: 10/23/2002 Time Sampled:

Analysis	Conc	entration	Units	Dilution <u>Facto</u>	
Acidity, as CaCO3	15	20.	mg/L at pH=8.	3 1.0	20
Analysis	Date Prepared	Date Analyzed	QC Batch Anal	yst Me	thod(s)
Acidity, as CaCO3	N/A	11/12/2002	021112-1 KI	M SM	2310B

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

buch Clifford J./ Baker Technical Manager

Client: US Army Corps of Engineers Attn: Laura Percifield 420 South 18th Street Omaha, NE 68102-2586 Date Sample Rptd: 11/14/2002 Date Sample Recd: 11/08/2002 Continental File No: 5409 Continental Order No: 82898 Client P.O.: 6704

Lab Number: 02110531 Sample Description: M021066-012 Date Sampled: 10/23/2002 Time Sampled:

Analysis	Conc	entration	Units	Dilution <u>Factor</u>	Reporting Limit
Acidity, as CaCO3	82	•	mg/L at pH=8	.3 1.0	20
Analysis	Date Prepared	Date Analyzed	QC Batch Ana	lyst Meth	od(s)
Acidity, as CaCO3	N/A	11/12/2002	021112-1 КІ	LM SM 2	310B

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J Baker Technical Manager

1804 GLENDALE ROAD • SALINA, KANSAS 67401-6675 785-827-1273 • 800-535-3076 • FAX 785-823-7830

			METHOD	BLANK	DATA			Page: 1
At 42	Army Corps of tn: Laura Perd 0 South 18th 9 aha, NE 68102	cifield Street				Date S Contin Contin	~ 1	
QC Batch	Lab Number	Analysis			Concentra	ation	<u>Units</u>	Book/Page
021112-1	021112BLK1	Acidity, as CaCO3			ND(20)		mg/L at p	H=8.3 5300/54

QUALITY CONTROL REPORT

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

.Bich Clifford . Technical Mar

Caro lne Cairo ality Assurance Officer

1804 GLENDALE ROAD • SALINA, KANSAS 67401-6675 785-827-1273 • 800-535-3076 • FAX 785-823-7830

1

Page:

QUALITY CONTROL REPORT

LABORATORY CONTROL SAMPLE / LABORATORY CONTROL SAMPLE DUPLICATE DATA

lient: US Army Corps of Engineers	Date Sample Reported: 11/15/200
Attn: Laura Percifield	Date Sample Received: 11/08/200
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 82898
	Client P.O.: 6704

			Spike		Accuracy Data (% Recovery)
<u>QC Batch</u>	Lab Number	Analysis	Level Units	LCS	Limits
021112-1	021112LCS1	Acidity, as CaCO3	0.00 mg/L a	N/A	#

N/A - Not Applicable

- Accuracy and/or precision control limits are either not available for this analysis or not applicable to this analysis.

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

Sah Clifford Rak Technical

ne Cairo

ality Assurance Officer

1804 GLENDALE ROAD . SALINA, KANSAS 67401-6675 785-827-1273 • 800-535-3076 • FAX 785-823-7830

QUALITY CONTROL REPORT MATRIX SPIKE / MATRIX SPIKE DUPLICATE DATA

Page: 1

Client: US Army Corps of Engineers	Date Sample Reported: 11/15/2002
Attn:Laura Percifield	Date Sample Received: 11/08/2002
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 82898
	Client P.O.: 6704

Matrix Spike/Matrix Spike Duplicate Data from Sample Batch:

	QC	Spike	Accuracy Data (% Recovery)	Precision Data Laboratory
Analysis	Batch	Level Units	MS MSD Limits	RPD Limit Number
Acidity, as CaCO3	021112-1	0.00 mg/L a	179J 180J #	0.6 # 02110529 +

J - MS/MSD cannot be performed for this analysis. Value shown is the result of a duplicate analysis of the sample.

- Accuracy control limits are not applicable to duplicate analysis or control limits are currently unavailable for this analysis.

+ - The MS/MSD sample analyses were performed on this sample from this Continental order number.

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

Buch Clifford 5 Technical Ma

2 Carlo

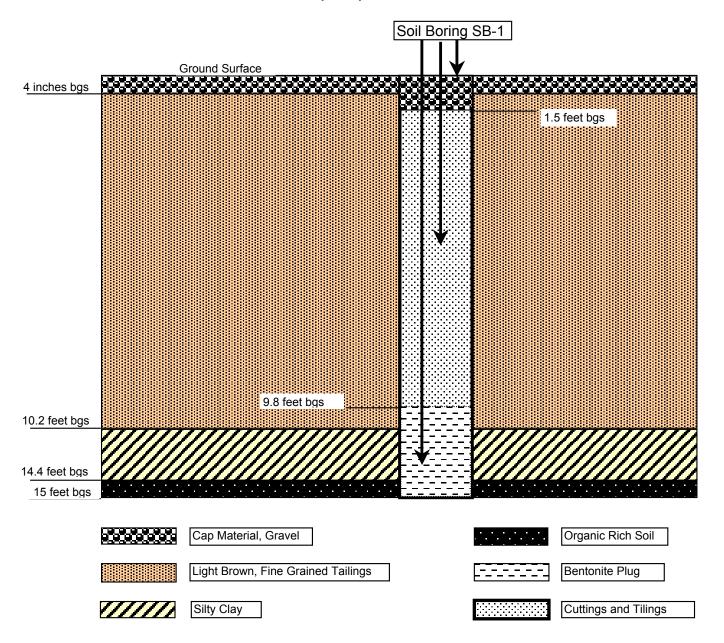
Jacquel Ine Cairo Quality Assurance Officer

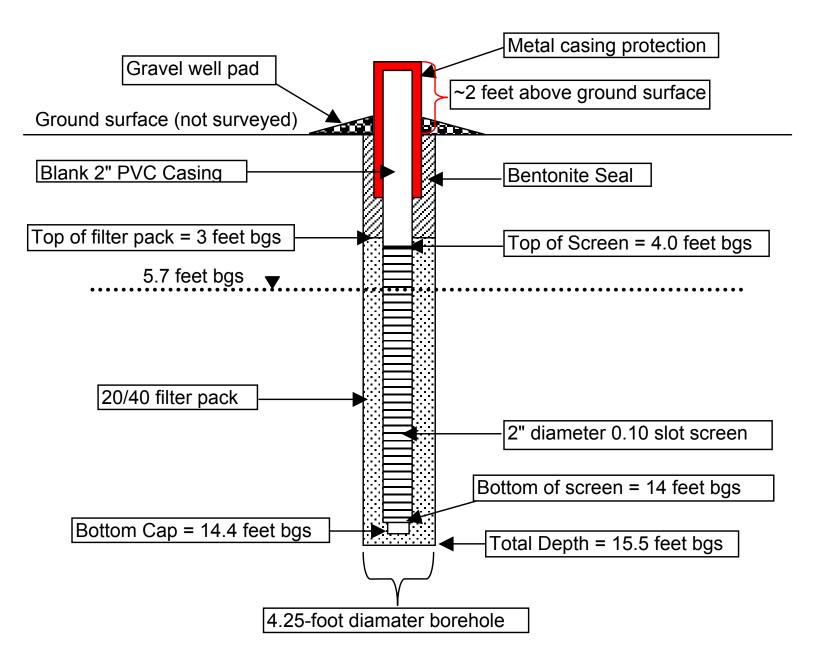
1804 GLENDALE ROAD • SALINA, KANSAS 67401-6675 785-827-1273 • 800-535-3076 • FAX 785-823-7830 **APPENDIX B: WELL LOGS**

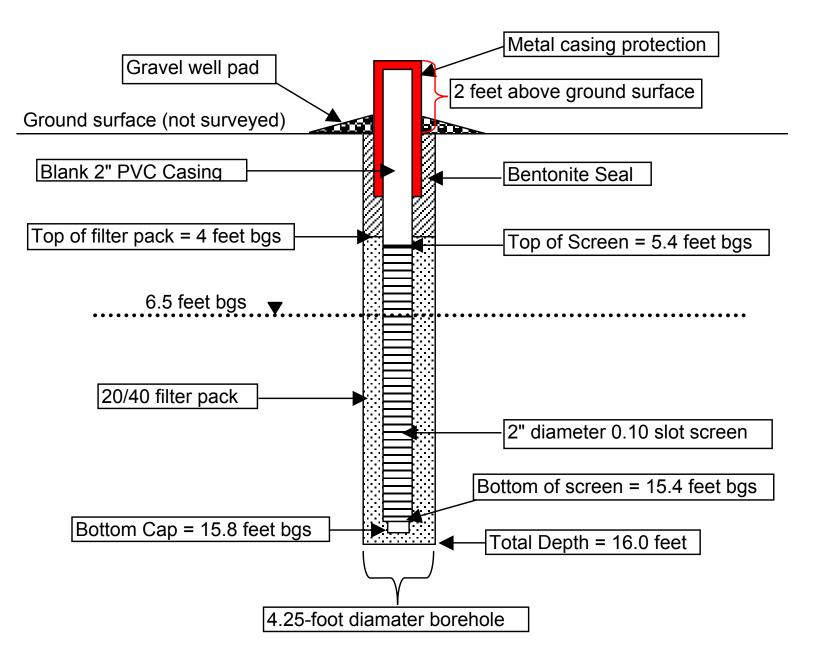
				-		Н	ole No. SB1				
DRILL	ing log		IVISION/A	INSTAL	LATION	N/A		SHEET 1 OF 1	SHEETS		
1. PROJECT RAMS	- WILLO		EK, CREEDE, CO.	10. SIZ	E AND TY	PE OF BIT	4.5" Bulldog (Cutter with	n Center Bit		
2. LOCATION	(Coordina	tes or Stat	tion)	11. DA	MSL		N SHOWN (TBM o	or MSL)			
3. DRILLING		02E, 41	89710N	12. M/			IGNATION OF DRI	LL			
US Ai	rmy Co	rps of E	ngineers	Guss Peck 1300C 13. TOTAL NO. OF OVERBURDEN, , DISTURBED UNDISTURBED							
 HOLE NO. and title nu 	(As shown umber)	on drawii	SB01	SA	MPLES TA	KEN	N/A		CINDISTONDED		
5. NAME OF	DRILLER		· · · · ·		TAL NUME		11/7				
6. DIRECTION		e Morr	isey	15. ELI	EVATION G		TIOLEI	countere			
VERT			DEG. FROM VERT.	16. DA	TE HOLE	SI	ARTED 10-22-02		0-22-02		
					evat i on t			n not Sur	veyed		
 THICKNES DEPTH DR 			N/A N/A				Y FOR BORING	N/A			
9. TOTAL DE			feet bgs	Dav	id Hen	ry, USA	CE Field Geo	ologist			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATER		% CORE	BOX OR SAMPLE		REMARKS ne, water los	s death af		
a	b	c	(<i>Description</i>) d		ERY	NO.	weather	ing, etc., if si a	ignificant)		
			Cap material <5in thick		•		CO.W/C C	3	d iver he leve the serve		
			Fine grained, light brown tailings						d just below the cap Int brown tailings		
	5 feet				50%		CO-WC-S	B01-3 collected	@ ~3 feet bgs		
	Jieet	-							E		
			Fine grained, light brown tailings		50%		CO-WC-S	B01-7 collected	@ ~7 feet bgs		
	10 feet		Same as above						F		
		_	1		1000/				l @ ∼10 feet bgs. The bove the clay, in the		
		_	Silty clay, gray		100%		the tailing				
	15 feet		Dark, black organic rich soil TOTAL DEPTH = 15.0 feet bgs				co-wc-s	B01-15 collected	d @ ~15 feet bgs		
		=	TOTAL DEPTH = 15.0 feet bgs					in native soil			
			1								
		-							F		
		_	1						F		
			1						E		
									- F		
		_							F		
		_	•						-		
									F		
		-									
			4								
		-	1						F		
									E		
		-	1						F		
			4						F		
			1						F		
		=	1						È		
			1						E		
			1						E		
		-	1						Ŀ		
		=	1						Ŀ		
			1						E		
		-	1						F		
		-]						F		
		-	1						F		
			1						Ę		
		-	1						F		
		-	1						E		
			1						E		
		-	1						F		
									F		
ENG FORM	1 1836	F	REVIOUS EDITIONS ARE OBSOLE	TE.	PROJECT		Creation		HOLE NO.		
MAR 71			(TRANSLUCENT)		I RA	MS - Willow (Creek	570	SB1		

						He	ole No. MW20			
	NG LOG	DIV	VISION/A		LATION	N/A	SH OF		SHEETS	s
1. PROJECT RAMS	- WILLC	W CREE	EK, CREEDE, CO.				4.5" Bulldog Cutte		Center Bit	7
2. LOCATION	(Coordina:	tes or Stati	on/	5			N SHOWN (TBM or MSI	-1		
3. DRILLING A	GENCY				Guss	Peck 13	300C		(*.	
4. HOLE NO.	As shown	on drawing	a title	13. TO SA	TAL NO. O MPLES TA	F OVERBU KEN	RDEN DISTURBED	>	UNDISTURBED	c
	RAMS - WILLOW CREEK, CREEDE, CO. LOCATION (Coordinates or Station) UTM 13, 331050E, 4189336N DRECTION 13, 331050E, 4189336N DRILING AGENCY US Army Corps of Engineers HOLE NO. (As shown on drawing title and title number) MW20 NAME OF DRILLER JOE MORTISEY JOE MORTISEY DIRECTION OF HOLE X VERTICAL INCLINED DEG. FROM THICKNESS OF OVERBURDEN N/A DEFECTION OF HOLE CLASSIFICATION OF N CLASSIFICATION OF N CLASSIFICATION OF N Ad Gravel With approximated				TAL NUME		IN/A			
6. DIRECTION			sey		EVATION G		ATER ~7.7 feet k	ogs compl	ETED	-
X VERT		INCLINED	DEG. FROM VERT.		TE HOLE		10-21-02	10)-21-02	-
			-		EVATION T	NANDA, DOOD EXISTING	LE Elevation no	<u>ot Surv</u>	reved	-
		 Mala postality 			NATURE O		ror CE Field Geologi	st		
ELEVATION		and the second second	CLASSIFICATION OF MATER		% CORE RECOV-	BOX OR SAMPLE	(Drilling time, w	ARKS	denth of	
CARACTER STREET, DEPARTMENT OF THE PARTY OF					ERY	NO. f	weathering, et	tc., if sig g	nificant)	
										F
										F
	5 feet									F
		-	Gravel With approximatley 50% S				No Sampler used becaus			þ
	10 feet		Gravel Size from >2mm to 24mm				cloggs up. Classification observing cuttings.	or materia	was done by	F
		-								F
	15 feet									E
	i s ieet									E
		-								E
	20 feet									-E
		=	TOTAL DEPTIT - 20.3 teet bys							F
										Þ
		=								þ
		=								Þ
		_								F
		=								F
										F
		3								E
		-								E
		=								E
										F
										F
		=								Þ
										F
		Ξ								E
										F
										F
		-								E
										þ
										F
										E
										þ
		_								F
										E
										F
		=								F
eng form	1836	PF	EVIOUS EDITIONS ARE OBSOLET	TE.	PROJECT			TH	OLE NO.	

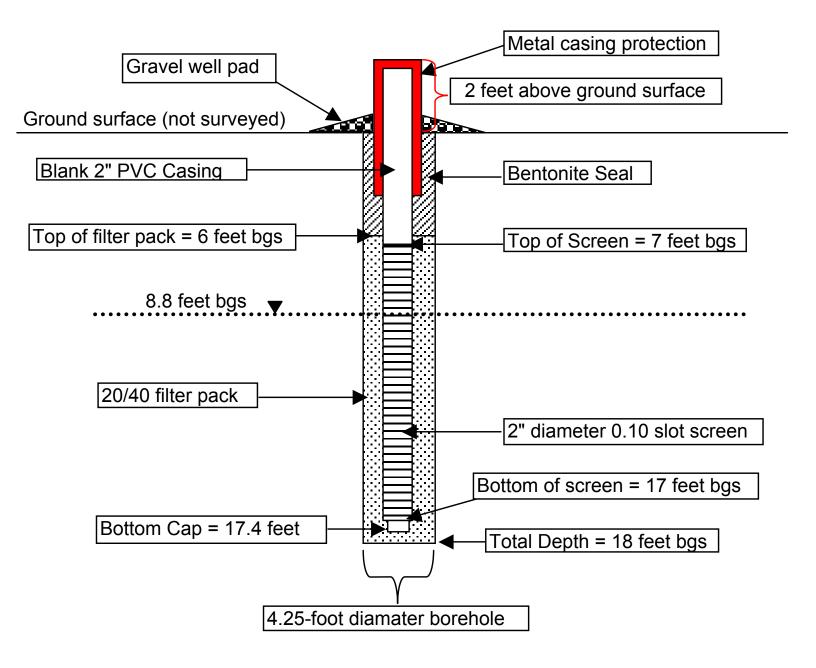
						H	ole No. MW19			
	ng log	DIV	/ISION/A		LATION	N/A	SH			s
1. PROJECT RAMS	- WILLC	W CREE	EK, CREEDE, CO.				4.5" Bulldog Cutt		Center Bit	7
2 LOCATION	(Coordina)	tes or Static 50E, 418	in.				N SHOWN (TBM or MS	/L/		
3. DRILLING A	GENCY		ngineers	10.0000000 Sc20 S20	Guss	Peck 13	IGNATION OF DRILL			
4. HOLE NO.	As shown	on drawing	MW19	13. TO SA	TAL NO. O MPLES TA	F OVERBL KEN	IRDEN DISTURBE	D	UNDISTURBE	D
5. NAME OF L	BILLER				tal nume					
6. DIRECTION		e Morri	sey	1			ATER ~7.7 feet	bgs Come	LETED	-
X VERT			DEG. FROM VERT.		TE HOLE		10-21-02	1	0-21-02	
7. THICKNESS	S OF OVER	BURDEN	N/A		EVATION T		LE Elevation no		veved	4
8. DEPTH DRI 9. TOTAL DEP			N/A 5 feet bas		NATURE O		TOR CE Field Geolog	ict		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATER		% CORE RECOV-		EL HEIG GEOLOG RE (Drilling time, v	MARKS	e daath af	-
a	b	c	<i>(Description)</i> d		ERY	NO.	weathering, e	etc., if si g	gnificant)	
	6	-								Ē
										E
	5 feet									F
			Gravel With approximatley 50% S	Sand			No Sampler used becau			F
	10 feet	_	Gravel Size from >2mm to 24mm	I			cloggs up. Classification observing cuttings.	n of materi	ial was done by	F
										F
	15 fact									F
	15 feet	_								F
			TOTAL DEPTH = 15.5 feet bgs							-E
	20 feet	_								E
		-								F
		_								F
		=								F
		=								Þ
		_								F
		=								þ
		_								F
		=								F
		-								E
		-								E
										E
										F
										F
		_								F
		_								F
										E
		_								þ
		_								F
										E
		_								þ
										Ē
										E
										F
										F
										E
										þ
	1836	PE	EVIOUS EDITIONS ARE OBSOLET	TE.	PROJECT		•	24	Hole No.	<u> </u>

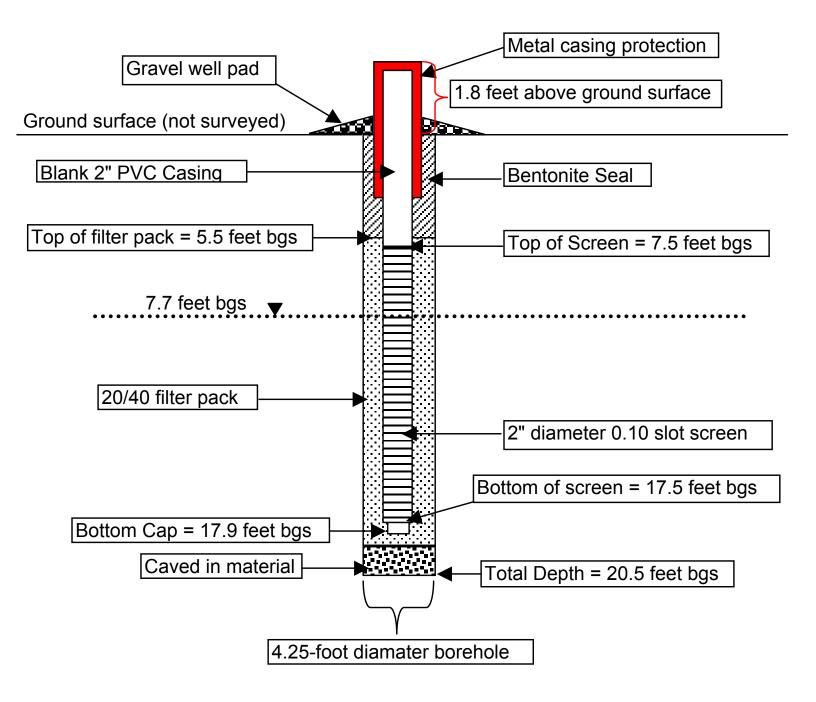

						н	ole No. MW18			12	
DRILL	ing log	i Di	VISION/A	INSTAL	LATION	N/A		SHEET ¹ OF 1	SHEET	s	
1. PROJECT RAMS	- WILLC		EK, CREEDE, CO.	10. SIZ	E AND TY	PE OF BIT	4.5" Bulldog Cu	utter with	n Center Bit		
2. LOCATION	(Coordina	tes or Stat.	ion)	11. DA	MSL	ELEVATIO	N SHOWN (TBM or	MSL)			
3. DRILLING A	AGENCY		89224N	12. MANUFACTURERS DESIGNATION OF DRILL Guss Peck 1300C							
US Ar 4. HOLE NO.	my Co	rps of E	ngineers	13. TOTAL NO. OF OVERBURDEN DISTURBED UNDISTURBED							
and title nu 5. NAME OF I	imber)		MW18		TAL NUME		,			_	
	Jo	e Morr	isey				ATER ~6.5 fee	et bas			
6. DIRECTION	200		DEG. FROM VERT.		TE HOLE		ARTED 10-22-02	COM	PLETED 10-22-02		
		9		17. ELE	EVATION T	OP OF HO				9	
7. THICKNES: 8. DEPTH DRI			N/A N/A		TAL CORE			A/A			
9. TOTAL DE		A Mala 2042 N	5 feet bas	Dav	/id Hen	ry, USA	CE Field Geol	ogist			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATER (Description)	IALS	% CORE RECOV- ERY	SAMPLE	(Drilling tim	REMARKS e, water los	is, depth of		
а	ь	с	d		е	NO. f		g, etc., if s g		_	
		_	Top Soil		20%		Sample collected	with core barr	rel	F	
		_								F	
	5 feet									F	
							No Sampler used be cloggs up. Classifica	cause gravel ition of mater	is to large. Sampler ial was done by	F	
	10 feet		Gravel With approximatley 50% Sand				observing cuttings.			F	
										E	
	15 feet	_								E	
	15 leet		TOTAL DEPTH = 15.5 feet bgs							E	
		-								E	
										E	
		-								E	
										E	
		_								Þ	
		=								E	
										Þ	
		=								Þ	
										F	
		_								F	
										F	
		_								F	
										F	
										F	
										E	
		<u> </u>								E	
		_								Þ	
		-								þ	
		200								F	
										E	
										þ	
		_								F	
										E	
		-								E	
										þ	
		-								F	
										E	
										E	
	1996								HOLE NO.	F	
eng foriv		н	REVIOUS EDITIONS ARE OBSOLE	1 E.	PROJECT		Creek		HOLE NO.		


r			DIV/OLDV	1.00.000.000		H	ole No. MW17			-	
	ng log		DIVISIONN/A		LATION	N/A		SHEET I OF 1	SHEETS		
1. PROJECT RAMS -	- WILLC)W CR	FFK, CREEDE, CO.				4.5" Bulldog C		n Center Bit	-	
2. LOCATION	(Coordinal	tes or Sta	EEK, CREEDE, CO.	11. DA	MSL		N SHOWN (TBM of	(MSL)			
3. DRILLING A	GENCY		189073N	12. MANUFACTURERS DESIGNATION OF DRILL Guss Peck 1300C							
US Ar 4. HOLE NO. (my Co	rps of	Engineers	13. TOTAL NO. OF OVERBURDEN DISTURBED UNDISTURBED							
and title nu.	mber)	on aran	MW17		TAL NUME					-	
5. NAME OF D		oe Moi	rrisey				BOXES N/A			+	
6. DIRECTION				16. DA	TE HOLE		ARTED	COMF	LETED		
		INCLINE	DEG. FROM VERT		EVATION T	OP OF HO	10-22-02		0-22-02	-	
7. THICKNESS			14/74			A1103. 00.2. 13.1.4		N/A	veyeu		
 DEPTH DRII TOTAL DEF 			N/A 3.6 feet bgs	19. SIG	NATURE (DFINSPEC	^{тов} CE Field Geo	loaist			
ELEVATION	DEPTH	LEGENE	CLASSIFICATION OF MATER		% CORE	BOX OR SAMPLE		REMARKS e, water los	s doath af	-	
a	b	c	d (Description)		ERY e	NO.	weatheri	e, water ios ng, etc., if si g	gnificant)		
		- E						9		Ŀ	
		-	7							F	
	5 feet	-	7							F	
		-					cloggs up. Classif	ication of mate	l is to large. Sampler rial was done by	F	
	10 fact	-	7				observing cutting	IS.		F	
	10 feet	-	7							F	
			Gravel With approximatley 50% San							F	
	15 feet		Gravel ranges in size from >2mm to	40mm						F	
		-	-								
	20 feet	-									
										E	
	25 feet	_	TOTAL DEPTH = 23.6 feet bgs							Þ	
	20 1000									E	
		-									
		-									
										E	
		-								F	
										E	
		-								E	
		-									
		-									
		-									
		-									
		-									
		_								F	
			1							F	
		-	7							F	
										F	
			1							E	
		-	4							F	
		_								F	
			7							F	
			3							E	
		-	4							E	
			4							Ē	
			4							F	
ENG FORM	1224		PREVIOUS EDITIONS ARE OBSOLE	TE	PROJECT			-			
MAR 71	1000		(TRANSLUCENT)			AMS - Willio	w Creek		HOLE NO. MW17		


<u> </u>						H	ole No. M	IW16			_		
DRILL	ing log	D	IVISION/A	INSTAL	LATION	N/A			SHEET ¹ OF ¹	SHEETS	3		
1. PROJECT				10. SIZ	E AND TY	PE OF BIT	4.5" Bulld	log Cι	utter with	n Center Bit			
2. LOCATION	(Coordina	tes or Sta	EK, CREEDE, CO.	11. DA	TUM FOR	ELEVATIO	N SHOWN (7	TBM or	MSL)				
UTM 1	3,3309	04E, 41	89823N		NUFACTU	RERS DES	IGNATION O						
3. DRILLING A US Ar		rps of E	ingineers	10.70		Peck 13					_		
HOLE NO.	. HOLE NO. (As shown on drawing title and title number) MW16					13. TOTAL NO. OF OVERBURDEN DISTURBED UNDISTURBED SAMPLES TAKEN N/A							
	NAME OF DRILLER					BER CORE	BOXES	N/A		69 A CU	1		
		e Mori	risey	15. ELI	EVATION G		/ATER ~8	.79 fe					
6. DIRECTION	22		D DEG. FROM VERT.	16. DA	TE HOLE	ST	ARTED 10-24-0	12		pleted 10-24-02			
		9		17. EL	EVATION T	OP OF HO			not Sur		1		
 THICKNES: DEPTH DRI 			N/A N/A				Y FOR BORI		J/A				
9. TOTAL DE	and the second		feet bgs	19. SK Dav	SNATURE O /id Hen	NEINSPEC	CE Field	Geolo	oaist				
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATER		% CORE	BOX OR SAMPLE		a 1720	REMARKS		1		
a	b	c	<i>(Description)</i> d		ERY e	NO.	We	ng tine atherin	g, etc., if s	ss, depth of ignificant)			
	8	_	Tailings		e	1			g		┺		
		=	Gravel With approximatley 50% Sand										
	5 feet	_									E		
	Jicet		Silty Clay (Same as noted in SB1)							- to low C	E		
		-	1				cloggs up. C	lassificat		s to large. Sampler al was done by	F		
	10 feet		4				observing ci	uttings.			E		
		-	Gravel With approximatley 50% Sand								F		
		-	From > 2 mm to 24 mm								E		
	15 feet												
		_									E		
	20 feet	-	TOTAL DEPTH = 18.0 feet bgs										
		-	4										
											Ξ		
			1								E		
		_									E		
		_									E		
		-									E		
		-	-								_		
		-									E		
		=	1								F		
			1										
		-											
		-	1								F		
			1								F		
		-	1								E		
			1								E		
		-	1								E		
		-	1								E		
		_	1								E		
		-	1								E		
		-	1								F		
		-	1								Ē		
		=	1								F		
		-	1								F		
		_	1								F		
			1								Þ		
		-	1								E		
			1								F		
		-	1								F		
		-	1								F		
ENG FORM	1 1836	F	REVIOUS EDITIONS ARE OBSOLE	TE.	PROJECT		-			HOLE NO.			
MAR 71			(TRANSLUCENT)		RA	MS - Willow (Creek		5.0	MW16			

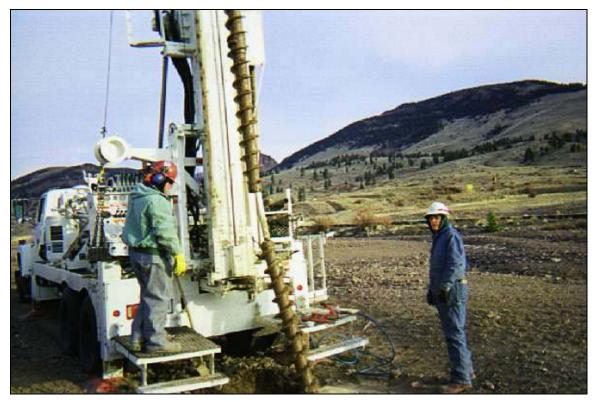

APPENDIX C: WELL DIAGRAMS


SOIL BORING (SB1) ABANDONMENT DIAGRAM



APPENDIX D: PHOTO LOG

Photograph 1: Setting up at MW20


Photograph 2: Steam Cleaning Equipment

Photograph 3: Setting up at MW19 Original

Photograph 4: MW19 Borehole Advancement

Photograph 5: Removal of Casing at MW19

Photograph 6: Removal of Casing at MW19

Photograph 7: Advancement at New Location for MW19

Photograph 8: Damp Cuttings at MW19 Indicating Groundwater

Photograph 9: Casing Set at MW19

Photograph 10: Top Soil in Core Barrel at MW18

Photograph 11: Blowing out MW18 Boring with Air-Rotary

Photograph 12: Blowing out MW18 Boring with Air-Rotary

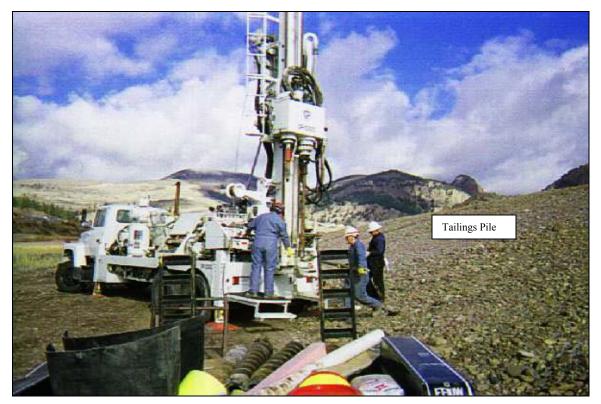
Photograph 13: Setting up at MW17 Location

Photograph 14: Advancement at MW17

Photograph 15: SB1 from MW11

Photograph 16: First Core Barrel from SB1

Photograph 17: Another Core from SB1


Photograph 18: Placing Bentonite Pellets in SB1

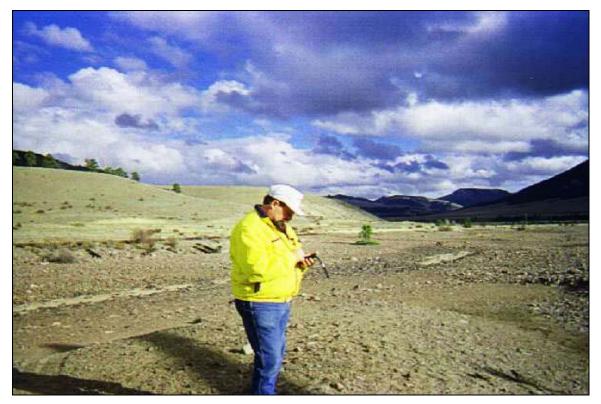
Photograph 19: Cap Material at SB1

Photograph 20: Cap Material at SB1 Compacted with the Drilling Rig

Photograph 21: Setting up at MW16

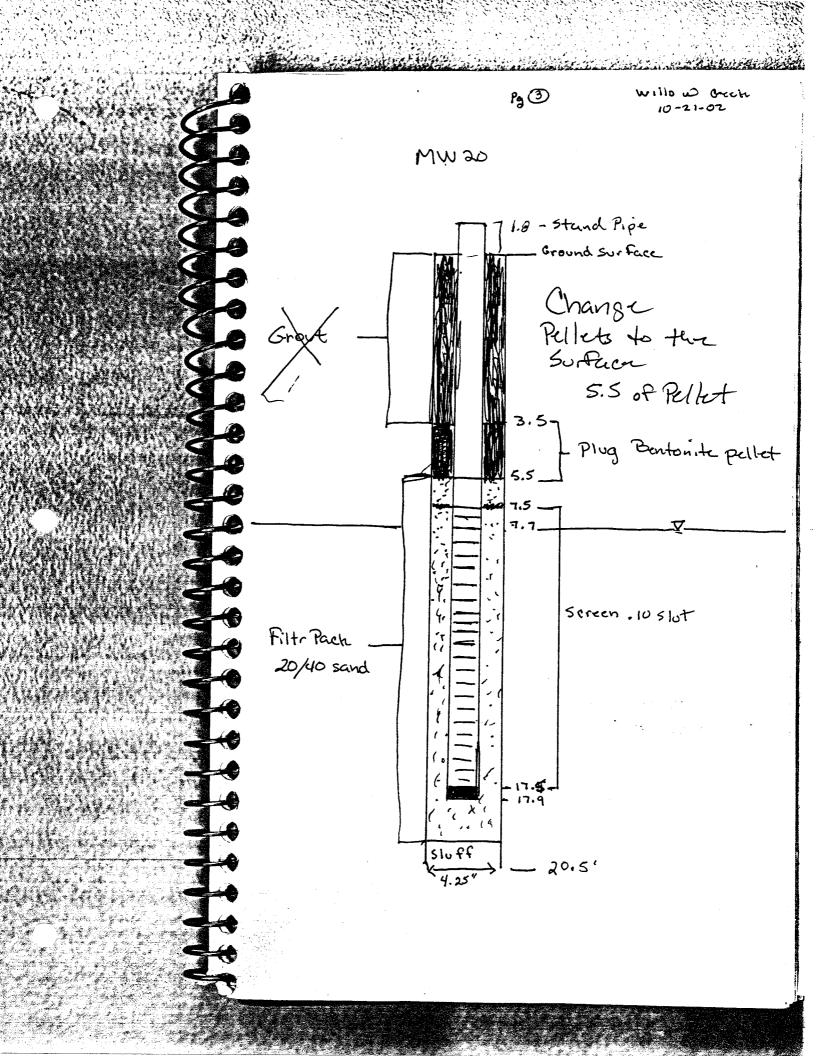
Photograph 22: Well Development at MW19

Photograph 23: Well Development at MW19


Photograph 24: Typical Well Pad

Photograph 25: Cleaning up at MW19

Photograph 26: Cleaning up at MW19



Photograph 27: Creede Resources, Inc (property owner) Representative Bob Tridle, Taking Notes.

APPENDIX E: FIELD LOG BOOKS

4

Pg (2) Willow Creek 10-21-02 Photo log EXposure # Location work 1 Mw 20 setting well 2 Mw 20 Steam cleaning 3 MW 19 (a) setting up 4 MW 19 (a) drilling out caring 5 11 Closing being extracted 6 11 Mw19(6) 2 drilling with corbard 8 Mw 19 (6) Cutting in water bearing zone 9 MW 19 (b) Casingset 10 MW 18 Core barrel 11 н Blow out bottom of Augen 12 11 the in the m 11 13 a mw 17 Setting up on Location 14 11 11 \mathbf{D} 15 AWH SBI From MWII Look up at MW 16 16 MWHE SBI Tail First furet 17 Mults SB1 Tamping Down Grand 18 100 16 5B1 11 11 19 MWIG set up Remainder MW19 Development

Pg(F) 61100 Greek 10-21-02 Water Table depths on Existing well 9' below Top of PVB Mart 4.2' below top of PVC Mw7 Ø MW6 - Dry TD = ~ 9.0 fect MWB - 4. 2' below Top of PVC MW20 - 9,15' . ιι 15 1.5 ۱١ Mwg - 7,96 13 1 1 11 Mwr1 - 4.18 10 11 11 11

willow Creek 10-21-02

- Borehole MW 20 was most graver and it was determined that pulling the Auger out to set growt would classe the borehole to collapse. Rather than try to fill the ta Remaining Anula space (about the seas) with growt, we place 3/8 pellets (Bod Contonite) to the surface (3' feet below surface). Dug out the slut at the surface so that growt could be placed for the standpipe

13:40 - started drilling on MW 19 by cutting - Gravel similar to MW20 Wintually this same Lithology TD-20 Ft

Pg (S)

a

-0

-6

-

-0

****@»

20

16:30 - Could not complete MW19. Gravel heaved into the suger. Could not get a filter pack in. Will have to abondon the borchoke in the morning -. Will probably move over 5-10 feet and drill another borchole

Willow Creck

10-22-02

4

8

Ø

Ð

Ą

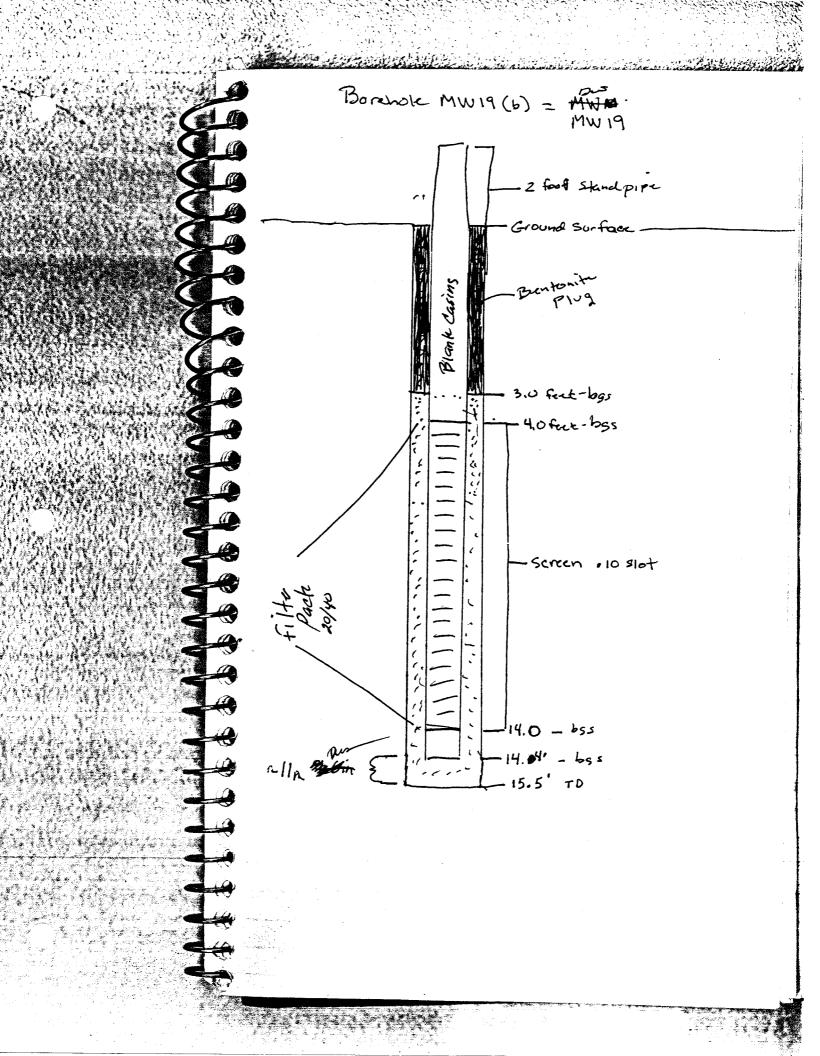
Ð

4

Â.

0730 - Arrived at MW19 Borchole Location Started drilling out casing to facilitate Abandonment

-0830 - Retreaue 10' foot of caring from MW19 (a) borchole - As the Ausers were pulled out - The borchole collapsed. 10' foot of screen was Not retrievedble.


Moved Rig 3 feet to the south of Muran to drill another borchok for Mura (Murak) - Cutting are the same as Murak) mosty Large Crawl and sand (55%)

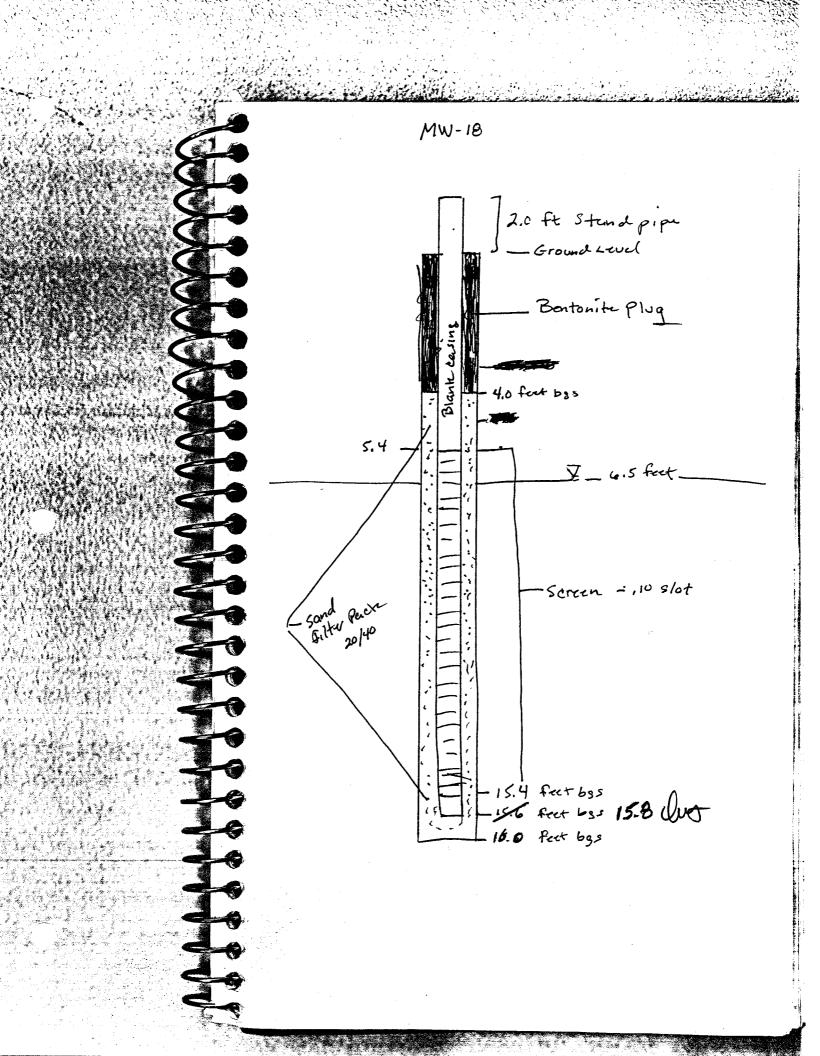
10:20 - TD on MW19(D is 15.5

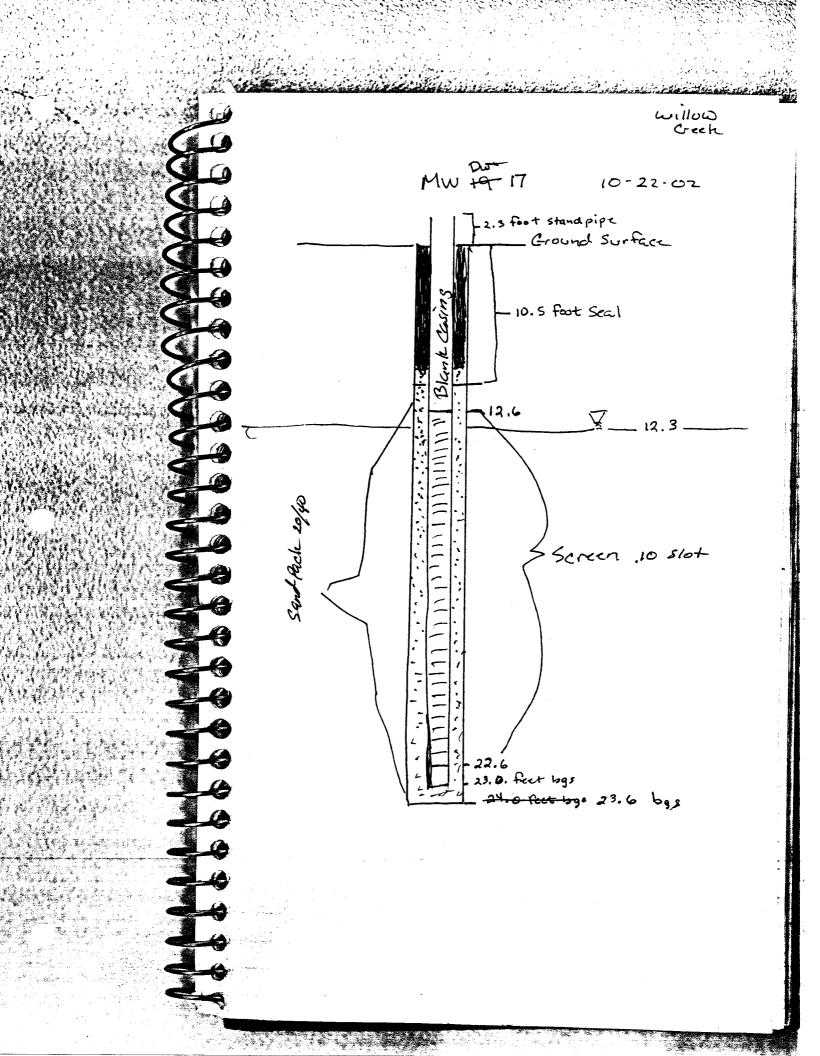
1100 - Screen and Cusing sette

Used 5 bags of 20/40 5016 to Sand 2 5 gal bucket of Bentonite 3/8" pellets

12:15 Setting up on MWIB Location - Drilling the first 5' with continuos core - 1st 11/2 is Top soil - Remainder is graved / sand (sold) - Water Table ~ 6.5' - Continuo drilling without core barrel.

10-22-02 14:30 - MW18: TD 15:5 5.50 1/ bag of 20/40 sand 3 - Bucket (Sgal) of 3/8" pellet


15:00 - Set up on MW17 Location


15:45 · First S-Fect Large Gravel up to 40mm in Size, Below S-fect, Gravel/sand (50%) Weter Table at 12.3 Foct bgs.

willow Creek

17:20. TD on MW 17 = 29 freet bgs USED 7.5 Solb bags of 20/46 sand USED 4.0 Buckets of 3/8" Pellets Well caved in above Filter Pack - Probably did not get a good scal, However a seal was placed abave the cave in and should not impact the functionality of the well.

17:15 - Ended work day

H Willow Creek 10-23-02

0800 Arrived at Location MW16, which is the borchole Location on the Tailing pile

Se

D

0

Veather condition · Calm, snowing + partly cloudy Temp v 30°F

Sounded MWII which is Located approximately 80 Feek to the west, at the TOE of the Tailing Pile. water Level is 4.18 Feet bass From the MWII, The wast pile is Approximated 6-7 feet to the TOP, from ground surface

First Soil Sample collect at ~ Sin below Surface, Just below the cap material The duplicate and the Co-we-SB46-05 were collected at this depth.

Drilled 5 foot of Auger with core barnel got 50% Recovery - all firse grained tailing Light Brown - less than the men in size Diplicate put

2 2^{md} 5 foot stem of Augor with Core barrel sof ~ 50% Recovers - all fine grained railus Light Brown - less than /10 mm in size CO-WC-SBTE-7 SB01

Willow creek 10-22-02 3'd Auger flight (15') got 100% recovery 10-10 feet Tail - same as before 10.2 0.5. HE 14.4 Son Silty Elay Eray in color 14.4 - 15 - Native Soil organic with Reets and Erromste color spots Rich Soil also had Greenish staining But mosty Black in Color Samples were collected at 10 e 15 feet CD-wc-5816-10. - SBOI Co-wc-SBHE-15. SBOI Placed Bentonite in the bottom of the Borcholn to 9.8 feet below ground surface 15 fect to 9.8 fect Bgs Paced borehole cutting (Tailing) back in borchole for 9.8 feet to 1.5 feet bys - Placed grout from 1.5 feet bas to surface Placed lose gravel from 1.5 feet to The sortice @ EPS +5+ Smith Acurany C0331002, 4189710 N 10:30 - Borchok Abandoned - Refer to Drawing and Log

11

(())

ill.

<u>ú</u>

Willow Greek 10-23-02 Samplers are Rapped package. A total of le samples, including 1 duplicate are in one cooler, with ICE & Chain -of- costody form. Deplicate Sample From SBDI from 3 feet was submitted as @-wc-sbor-20 14:00 - Dropped samples off at ups Tracking # 12 144 200 01 1002 0404 Refer to development Logs for well development SBOI Ground Surfac Gravel CAP Material Gravel CAP Material Graul fin 1.5 feet bgs Tailings Tailings From -10. feet bgs (Possibly Engineered base) Silty Clay Perton, NATIVE SOIL 15 feet NATIVE SOIL

Willow Creek

10-24-02

-0800: MW18 + MW17 are developed (Reforto Development log) MW20 does not produce as well as 17 ~ 18 and has not cleaned up. This morning, we will surge the well with Air pressore. - MW19 will be developed today. - We may drill an additional well - should - Find out the location this morning. If an additional well is drilled - it shall be called MW-16

-10:00 Could not develop MW19 because there is a plus in the casing, keeping the pump from going down the well - Needs Setting

MW20 was surged with Aire + bailed with bailer, still has not cleaned up - will Ron a pump down later in the Afternoon

- Setting up on MW16. Location is directly east of MW12-er in 56 feet from the Centerline of the RR Tracks on the cast side

EPS Coordinates

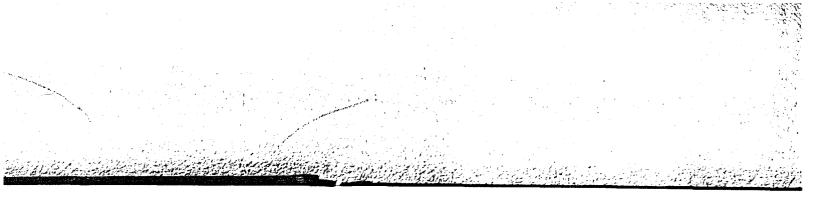
1

	UTM ZONE 13 - 5 meter Accuracy				
Well/Boring	EAStine	Northing			
MWIG	330904	4189823			
MW17	331464	4189073			
MW 18	331398	4189224			
MW19	331150	4/89336			
MW20	331050	4189564			
SBI	331002	4189710			

MW16 = first 5 foot of Auger -1+ foot Tailing - 2 - S feet Gravel Ind stoot Auger ~ 1" Foot Thick Lays of Clang E-10 toto ravel / sand (50%) water @7.7 3rd - 5-foot Auger 10-15 feet Grewel/Sand (50%) 4th 5-foot Augo 75-20 15-18 feet Gravel/scend (50%) TP~18 feet ~ I foot of PAD Screen botton @ 17.0 bgs Bottom of CAP ~ + TTO ber 17.4 feet loss Top of Screen ~ 7.0 feet bys Fitter Pach at ~ & fect bgs Seal from ~ le fact to 2 feet bys 12:20: MW 16 Completed

Willow Creck
Willow Creck
1500-finish developing MW20. IT cleaned up
Much Nicer After being surged with a baitor
Never Rungeel dry and the wester cleared up.
Refer to development Log.
1505 - Started developing MW16
Water Depth B.79
TD 19.3 from TOC
1610 Completed MW14 a TOTAL of Bogaltons
of water Remarch - still alither milley

16:30 - STARTED Developing MW19
 Wester Depth 7.70 belan TOC
 TD from TOC = 15.4
 Ko:55 Completed Development
 Water Cleared up
 Dumped at a Total of 40 gellons


JOB DONK

1337 READINE PH COND & C 545 337 11.4 WATER STILL BELOMINE LESS TURBID 1338 DUMPED 28 64L 1 1339 READING - PUMP-OFF PH COND. °C 5.43 334 10.1 1344 PUMP-ON 1345 READING PH COND. OC 330 11.6 5,17 1347 PUMPED 33 GAL WATER IS LIGHT TAN SEE-THROUGH 1349 READING °C PH COND. 5,29 329 10.9 1350 PUMPED 38 GAL 1353 PUMPED 43 GAL

1353 READING 00 PH COND 5.26 330 10.6 1354 PumP - OFF (5 min REST) 1358 PUMP-ON TURBIDITY STILL COMING DOWN 1400 READING ۰۲ PH COND. 5.17 338 11. E 1401 PUMPED - 48 GALS 1404 PUMPED - 53 GALS 1405 READING PH COND. °L 5.30 333 10.6 1406 PUMP-OFF PUMPED~ 56 GALLONS

MW -18 Meis. Conductioning in S/cm 1422 WL 8.05 TOC TO 17,25 TOC land measured in MS/cm 1434 WARE STARTED PUMP VERY TURBIO LT. BROWN 1436 READING PH COND °C 5,38 2235/cm 11.0 1436:30 PUMPED 5 GAL 1440:30 11 10646 1441 READING PH COND. °C 5.56 286 9.7 1443:30 FUMPED 15 GAL 1444 READING (PUMP REST) ٤C PH COND-558 291 9,8

الموازين الأوجية وتترقر والجريون أتحم الأرجي والمراجع

	144 9	PUMP-ON		
	1450	WATER CLEP	RING - OP	AQUE
	1451	READING	PUMPED	20 GAC
	•	COND.		
		2,92		
	1551	READING	PUMPED	25 GAL
		COND.		
	5:47			
Y	1552	WATER	STILL CL	EARING
		NICELY 2		
	1554	READING	PUMP-OFF	= (306A
	PH	COND	ەر	
		2,99	9.6	
			an 127 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910	
				and a state of the
	ми, т. ца на отношение и на посто на по			
	· · · · · · · · · · · · · · · · · · ·	an and that the contraction of providing Against Administration of the state of the	a construction and that a construction and any experimental operations	
	1 Norman and Anno 1997 (Second Second Sec		ngalat all hadd all to self all of the constant of the constant of the second by the second second second second of the	

MWZU WL 8.38 TOC TO 18.85 TOC Mens. word. in mSton 1518 STARTED PUMP WATER IS TURBID LT BROWN 1520 WATER IS VERY TURBIO BROWN PH 5.20 Could For Temp 11.4°C Turned Rump off 1521 Turned Purp on 1531 Ran for a 1 min 30 soc. Purped 5 gal, 5th pred at 1532/2 ph 5,15 cond. 4.11 Tem 11.3°C Turned Pum on 1541 Mat 1542 ph: 5.50 cml: 1811 15/cm ""10.C Turned 3gls. Turned Pump in @ 1546 offict 1546/2 Pumper 1 gallon Tuned pump on 1548 old often Dise ph: 5.19 and: 4.03 n 5/cm temp 11.0°C

Stert in take says at 1401 - Start pump at 1420 For 2. 2 50 sec. ph: 4.50 cmel. 4, 10 ms/m temp: 10.9°C MW-19 10-24-02 Water Level = 7.70 below TOC Tagged The bottom at 15.4 belo TOC HAD MUD at The Bottom

10-24-02

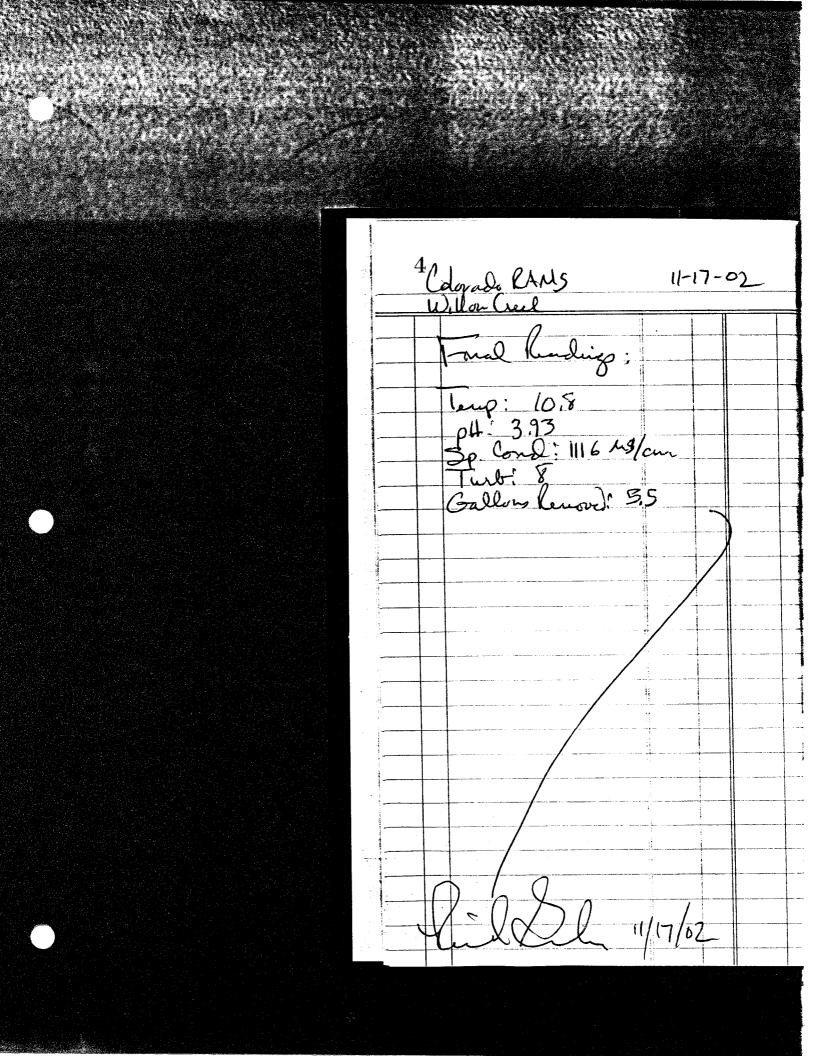
MW 19 miles suger at 1401 66 mg/cm yallon. Time y allon. conel: 4.09 m S/cm demp: 10, 9 °c Gallons pumped PH_ Cond. Temp 1630 4.14 1400 Brown 1 11.7 4,09 1480 12.2 Brown 10 at 1420 For 2. 2 min 16:40 Milky 4.02/440 11.6 20 STOPPEPPUMP Concl. 4, 10 mb/m feng: 10. 4°C 16:45 STARTED FUMP Milky 4.03 1480 11.8 30 4.02 1480 16:55 11.7 Cla C& 6 MW-19 10-24-02 STOPPED PUMP evel = 7.70 below TOC e bottom at 15.4 belo TOC at the Bottom

na estidine concerte se la NO

10-24-02 MW 20 No /cm Time TEMP PH Cond. Coloc Gallons NM . 5.22 Brown H:10 9.9 L 5.00 4880 milky 10.4 15 5+0ppcol pump 4.94 4850 10.2 14:20 Miky Milkg 10.2 14:25 20 4.83 4990 9.9 30 4.71 4950 10.1 Clear 40 STOPPED Runp 14:35 466 STArted Rung Stear 1440 45 4.66 4840 8.8 Clear 45 4.62 4842 9.9 Clar 60 STOPPED PUMP 1450 STARTE

10-24-02 MW16 Water Depth 8.79 TD 19.3 from TOC Time ; pH , Condys/cm Temper color Gallons STArt Pu 1515 P... 5380 Brown 4.15 l 1515 4.08 5810 Brown 10.9 10 4.03 5880 10.7 Light Brown 20 15:25 STOPPED PUMP 15:30 STARTED PUMP 4.06 5830 30 10.3 Light Brown 5900 4.06 40 10.1 Milky STOPPED Pump START PUMP 15:40 15,45 Milky 4.01 5630 10.1 50 4.02 5500 9.9 Milky 60 15:50 STOPPED PUMP # STARTED PUMP 16:00 3.96 5250 Milhy 10.0 70 5450 4,62 9.9 Milly 80 16:10 STOPPED RUMP

10-23-02


- <u>,</u>			Mu) 17	unter Les	24.9570
	Time	pH,	Condu	ton Tempso	_ Color	Gallons
	1314	. STK	RTEDF	ump'		
· · · · · · · · · · · · · · · · · · ·	1314				Brown	ø
	1324	5,04	350	12.5	Brown	12
• · · · · · · · · · · · · · · · · · · ·		Pur	np of	6		
•	1329	STR	RTED	PUMP	Brown	
			336		Lt Brau	18
		5.45	337	11.0	L+ Brown	
		5,43	334	10,1	11	28
•	1339	P.	mpe	FF.		
	1344	ST	ARTED	Bund		·
		5.17	330	11:6	11	33
	-	5,29	329	10,9	11	38
	_	5.24	330	10.6	11	43
· ·	1354	Puin	P OFF			
	1358	STI	ARTR	omp		
			338	11,8	Milky	48
	-			10.6	Milky	
		Γ	Pum		0	56
	R	1	['`'			•
		· ·				
						<u> </u>

10-23-02 MW-18 Water Level 8.05 TOC TD 17,25 TOC Time pH cond 5/cm Temp Color Gallon STARTEP Pump 2,23 1434 Brown Ø 5,38 11.0 5 11 5.56 2.86 9.7 10 (1 2.91 9.8 5.58 15 11 Pump off STARTED Pump 2.92 0.5 1444 1449 5,53 LT Braun 20 Milky 5.47 2,90 10.4 25 2,94 9.4 5.61 15 30 Pump off

Claudo Ritons 11/17/02 Willow Creck 1200 Arvived on site at knownering web mw-17. Fersonnel male Rich Grabowshi & Brinn Jordan USACE. W.L. = 13,24' from TOC. Equipment: geoprop 2 peris to the purp tubing - Silicong entre length pH, temperature, conductor by WTW (formerly ORION You th multi-line P4 meter Solins + W.L. meter Tubing inserted to approximitely the of the Submerged Sardened mid-print internals 1228 Began Junging Well. 1314 Obtamiel Sauples CO-WC-MW17 for dissolved metals, fater metal alkalinety/chilorial Sulfert -1317 Jul Sarph Total Metals I Same Poly, HNO3, 4°C

2 Colorado RAMS 1/17/02 Willow Creak Dissolved Metals, 1 500-ml pol 4°C. Alkalinhy Chlaride, Silfate, of 500poly 4°C. Final Kending: Temp 10.2°C PH 5.33 Sp. Cond. 383 ms/cm Turb 2.9 Gallons level 65 Note that dissolut metals were not fiture in The field. All disselved metals Sauples must be filtered and preserved upon veceipt at the leb. 1348 prived at monitoring well Mil Dr. W.L. - 8.07 from TOC 1355 Began parging well

alo RAMS Colorado RANIS 1/17/12 1/11/02 w Creek Willow Creeke Solved Hetals, 1 Soo-nel pay 1442 Obtained sample Co-wc-mw18: calinity Chiloride, Silfate, (Soo-1500-ml poly, total metals, T HND3 i4 C 1 500-ml poty dissolve net 4°c 1500-ml poly, alkalinity Kulondy and Kending Sulfate, 4°C -p 10.2°C Find Realings: Tenp. 8.6°C pH 5.06 Sp. Cond. 3.24 ms/cm Turb. 10 vb 2.9 Ilous levered 65 Gallons Renord 7 te that dissolved metals were at filtered in The field. All 1458 Arrivelat Monitoring will 3silved metals Samples MW 19. W.L = 7.69 from Toc. not be filtered and preserved ipon vecent at the lab. 1510 Begin Runging Unell 1541 Ob Jaim Daryle Co-WC-MU19 1 500ml Joly, total metals, Hub E42 Arrived it monitoring will MW P. W.L. = 8.07 from Tac 1500 ml poly dissolved make 47 1500 ml poly alk/self/chlor, 42 Began porging will.

8 27 Colorado RAMS 11-17-025 alo RAMS 11-17-02 Willow Creek nal Rendings; Arrived on site at promition Jell MW 20, Passinhel include Kich Grabinshi, and Frida Worden, USHIE, We the IS Syring C. el (205), with a Slight breeze. up: 10.8 H: 3.93 <u>P</u> Cond: 1116 hg/cm urb: 8 allows Removed: 5,5 Wh = 7.27 from To-Same equipment and proceedings as decomented yesterday. 0738 Began Perging well 0910 Obtamiel samples Co-4C-Mw20 (field sample) a Co-4c-mind duplicate. Total Wetzls: 2 Sco-me polys, Holz 4°C Dissilved Metals: 2500-ml polys 4c Ath/Chlor/Suith: 2500-ml polys 4c NKo collecter split danses for The Willow Creek Reclamation Commottee for metals, catorianos and DOC (dissolved origanic Carlon) 17/02

6 Colorado RAMS Willow Cruck 1-18-02 Final Readings: kenp: 9.3°C plt: 4.22 Sp. Cond: 4.23 ms/cm Turb: 15 Gal lenored: 6 0942 Around at mon. tring mell MW16, W.L. = 8.96 from TOC 0949 Regun proging: 1022 Obtamed Sangle Co-WC-MW16; toto metals, HNO3 42; dissour metals, y°c + HU/Calor/Sul, YE. 1 500-ml Joly each. Keadings Final PH : 2,97 Temp: 10.3 °C Sp. Cond: 4.38 m.S/cm Gal. Cenored: 6

Colorado RAMS 1-18-027 do RAMS 1-17-02 W. How Creek wCreek Note: Aso Collected Split page for the Reclamation Committee Metals, Cattory Anions, and Doc. al Readings: p: 9.3°C 4.22 Lond : 4.23 ms/cm 6: 15 lewrel: 6 Arriel at mon tring well NW, W.L. = 8.96' from TOC. brancel Sargle Ce-WC-MWIE; O metals, HAD; 4°C; dissour tals, 4°C: HU/Cha/SU, 4°C. 500-ml Joly each. al leadings : : : 2,97 f: 10.3 °C (on D: 4.31 ms/cm rt: 7 D. Cenored: 6